K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2019

A B C M N O E F D H R Q P G

a) Dễ thấy: ^CMN = 900 - ^ACB/2;  ^AOQ = ^OAB + ^OBA = 900 - ^ACB/2 => ^CMN = ^AOQ

=> Tứ giác AOQM nội tiếp => ^AQO = ^AMO = 900 (1)

Tương tự ta có: Tứ giác BOPN nội tiếp => ^BPO = ^BNO = 900 (2)

Từ (1) và (2) => ^AQO = ^BPO hay ^AQB = ^BPA => Tứ giác ABPQ nội tiếp (đpcm).

b) Xét \(\Delta\)AQB vuông tại Q: E là trung điểm cạnh AB => ^EQB = ^EBQ = ^ABC/2 = ^QBC 

=> QE // BC (2 góc so le trong bằng nhau). Mà EF là đường trung bình tam giác ABC nên EF // AB

Do đó 3 điểm E,Q,F thẳng hàng (Tiên đề Ơ-clit) (đpcm).

c) Sửa điểm E thành điểm R cho đỡ trùng.

+) C/m : ^BAC = 900 => AR = AC ?

Chứng minh tương tự câu b ta có: PE //AC, gọi G là hình chiếu của O trên cạnh AB

Do ^BAC = 900 => AB vuông góc AC. Từ đó: AC // OG // PE. Áp dụng hệ quả ĐL Thales thì có:

\(\frac{r}{AD}=\frac{OG}{AD}=\frac{EG}{EA}=\frac{PO}{PA}=\frac{ON}{AR}=\frac{r}{AR}\)=> AD=AR (đpcm).

+) C/m : AR = AD => ^BAC = 900 ?

Lại theo hệ quả ĐL Thales, ta có các tỉ số: \(\frac{OG}{AD}=\frac{r}{AR}=\frac{ON}{AR}=\frac{PO}{PA}=\frac{EO}{ED}\)

=> OG // AC (ĐL Thales đảo). Mà OG vuông góc AB => AB vuông  góc AC hay ^BAC = 900 (đpcm).

d) Hệ thức cần chứng minh \(\Leftrightarrow r\left(AB+BC+CA\right)=OC\left(MN+2PQ\right)\)

\(\Leftrightarrow S_{ABC}=S_{CMON}+2S_{CPOQ}\Leftrightarrow2S_{AOB}=2S_{CPOQ}\Leftrightarrow S_{AOB}=S_{CPOQ}\) 

\(\Leftrightarrow OG.AB=OC.PQ\Leftrightarrow\frac{PQ}{AB}=\frac{OG}{OC}\Leftrightarrow\frac{OQ}{OA}=\frac{OM}{OC}\)(Do tứ giác ABPQ nội tiếp)

\(\Leftrightarrow\Delta AOQ~\Delta COM\left(g.g\right)\Leftrightarrow\hept{\begin{cases}\widehat{AQO}=\widehat{CMO}\left(=90^0\right)\\\widehat{OAQ}=\widehat{OCM}\left(=\widehat{OMQ}\right)\end{cases}}\)(Điều này hiển nhiên đúng)

Vậy hệ thức cần chứng minh là đúng => ĐPCM.

14 tháng 4 2019

bạn ưi đề sai ạ mk ko vẽ hik đc 

bạn xem lại đề hộ vs ạ

14 tháng 4 2019

trả lời

100% sai đề

hok tốt

2 tháng 8 2018

B A C O D E F S M N S'

1) Theo t/c góc tạo bởi tia tiếp và dây cung: \(\widehat{BCA}=\widehat{BAD}\). Dễ có \(\widehat{BCA}=\widehat{BAC}=30^0\)

\(\Rightarrow\widehat{BAD}=30^0\)\(\Rightarrow\widehat{BAC}+\widehat{BAD}=60^0\Rightarrow\widehat{DAC}=60^0\). Đồng thời \(\widehat{BAC}=\widehat{BAD}\)

=> AB là tia phân giác trong tam giác ADC

Xét \(\Delta\)ADC có: \(\widehat{DAC}=60^0;\widehat{DCA}=\widehat{BCA}=30^0\)

=> \(\Delta\)ADC vuông tại D. Hay \(\Delta\)ADC nửa đều => \(\frac{AD}{AC}=\frac{1}{2}\)

Ta có: AB là phân giác trong tam giác ADC (cmt) \(\Rightarrow\frac{AD}{AC}=\frac{DB}{CB}=\frac{1}{2}\Rightarrow\frac{DB}{DC}=\frac{1}{3}\)

2) Dễ thấy \(\widehat{ABD}=\widehat{BAC}+\widehat{BCA}=60^0\). Xét \(\Delta\)ADB:

\(\widehat{ADB}=90^0\)(cmt); \(\widehat{ABD}=60^0\)=> \(\Delta\)ADB nửa đều => BD = 1/2 AB

Áp dụng ĐL Pytagore cho \(\Delta\)ADB nửa đều: 

\(AD^2=AB^2-BD^2=AB^2-\frac{1}{4}.AB^2=\frac{3}{4}.AB^2\)\(\Leftrightarrow AD=\frac{\sqrt{3}}{2}.AB\)

\(\Leftrightarrow\frac{AB}{AD}=\frac{2}{\sqrt{3}}\)(1)

Tương tự với tam giác ANB nửa đều: \(\frac{AB}{AN}=\frac{2}{\sqrt{3}}\Leftrightarrow\frac{AB}{2AN}=\frac{1}{\sqrt{3}}\)

\(\Rightarrow\frac{AB}{AC}=\frac{1}{\sqrt{3}}\)(2)

Cộng (1) với (2) \(\Rightarrow\frac{AB}{AD}+\frac{AB}{AC}=\frac{3}{\sqrt{3}}=\sqrt{3}\Leftrightarrow\frac{1}{AD}+\frac{1}{AC}=\frac{\sqrt{3}}{AB}\)(đpcm).

3) Gọi giao điểm của NE với AO là S; MF với AO là S'. Ta đi c/m S trùng với S' .

Dễ thấy: \(\widehat{OBC}=180^0-\widehat{ABD}-\widehat{ABN}=60^0\)\(\Rightarrow\widehat{OCB}=60^0\)

Mà \(\widehat{ABD}=60^0\Rightarrow\widehat{OCB}=\widehat{ABD}\). Do 2 góc này đồng vị nên AB // OC

Hay BE // OC \(\Rightarrow\frac{DB}{CB}=\frac{DE}{OE}\)(ĐL Thales) . Mà \(\frac{DB}{CB}=\frac{1}{2}\)(câu b)

\(\Rightarrow\frac{DE}{OE}=\frac{1}{2}\). Lại có: \(\frac{DE}{OE}=\frac{BE}{AE}\Rightarrow\frac{BE}{AE}=\frac{1}{2}\)(Hệ quả ĐL Thales)

Tứ giác ABCO có: AB // OC; AO // OB (Cùng vuông góc AD); AC vuông BO

=> Tứ giác ABCO là hình thoi. N là trung điểm AC => N cũng là trung điểm BO => \(\frac{ON}{BN}=1\)

Nhận thấy \(\Delta\)ABO có: E thuộc AB; N thuộc OB; NE cắt AO ở S

\(\Rightarrow\frac{BE}{AE}.\frac{ON}{BN}.\frac{SA}{SO}=1\)(ĐL Menelaus)

Thay \(\frac{BE}{AE}=\frac{1}{2};\frac{ON}{BN}=1\Rightarrow\frac{SA}{SO}.\frac{1}{2}=1\Leftrightarrow\frac{SA}{SO}=2\Leftrightarrow\frac{SA}{AO}=2\)(*)

Áp dụng hệ quả ĐL Thales: \(\frac{OF}{EF}=\frac{OC}{AE}=\frac{AB}{AE}\)(Do OC=AB)

Lại có: \(\frac{BE}{AE}=\frac{1}{2}\Rightarrow\frac{AB}{AE}=\frac{3}{2}\)\(\Rightarrow\frac{OF}{EF}=\frac{3}{2}\)

Vì \(\frac{BE}{AB}=\frac{1}{3}\Rightarrow\frac{BE}{\frac{1}{2}.AB}=\frac{2}{3}\Rightarrow\frac{BE}{BM}=\frac{2}{3}\Rightarrow\frac{EM}{BM}=\frac{1}{3}\). Mà BM=AM

\(\Rightarrow\frac{EM}{AM}=\frac{1}{3}\). Ta áp dụng ĐL Menelaus với \(\Delta\)AEO:

\(\frac{OF}{EF}.\frac{BE}{EM}.\frac{S'A}{S'O}=1\). Thế \(\frac{EM}{AM}=\frac{1}{3};\frac{OF}{EF}=\frac{3}{2}\)(cmt)

\(\Rightarrow\frac{S'A}{S'O}.\frac{1}{3}.\frac{3}{2}=1\Rightarrow\frac{S'A}{S'O}=2\Rightarrow\frac{S'A}{AO}=2\)(**)

Từ (*) và (**) suy ra \(SA=S'A\). Mà 3 điểm A;S;S' thẳng hàng

Nên S trùng với S' => 3 đường AO;MF;NE gặp nhau tại 1 điểm (đpcm).

2 tháng 8 2018

Tỉ số \(\frac{DB}{CB}=\frac{1}{2}\) được lấy từ ý 1) nhé, quen tay nên gõ nhầm.