Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì BE = AB (gt) => △ABE cân tại B => AB = BE và BAE = BEA
Vì EK ⊥ AC (gt) mà AB ⊥ AC
=> EK // AB (từ vuông góc đến song song)
=> KEA = BAE
Mà BAE = BEA (cmt)
=> KEA = BEA
Xét △HAE vuông tại H và △KAE vuông tại K
Có: AE là cạnh chung
HEA = KEA (cmt)
=> △HAE = △KAE (ch-gn)
=> AH = AK (2 cạnh tương ứng)
Xét △EKC vuông tại K có: KC < EC (quan hệ cạnh)
Ta có: AC = AK + KC = AH + KC < AH + EC
Xét △HBA vuông tại H có: AH < AB (quan hệ cạnh)
Ta có: AH + BC = AH + EC + BE > AC + BE = AC + AB
A B C H M N
a) Nối AM
Do BA = BM => △ABM cân tại A
=> BAM = BMA
Ta có: BAM + MAN = 90o => BMA + MAN = 90o
Lại có: MAN + AMN = 90o (△MAN vuông tại N)
=> HMA = NMA
Xét △HMA và △NMA có:
MHA = MNA (= 90o)
AM: chung
HMA = NMA (cmt)
=> △HMA = △NMA (ch-gn)
=> AH = AN (2 cạnh tương ứng)
=> △AHN cân tại A
b) Xét △ABC vuông tại A
=> BC2 = AB2 + AC2 (định lí Pytago)
=> AB2 + AC2 + AH > AB2 + AC2
=> BC + AH > AB + AC
c) Câu này hình như phải là chứng minh 2AC2 - BC2 = CH2 - BH2 chứ nhỉ? Nếu vậy thì cách làm như sau:
Xét △HAC vuông tại H
=> AC2 = HC2 + HA2 (định lí Pytago)
=> HC2 = AC2 - HA2
Xét △BHA vuông tại H
=> AB2 = HB2 + HA2 (định lí Pytago)
=> HB2 = AB2 - HA2
Khi đó:
CH2 - BH2 = AC2 - HA2 - AB2 + HA2
=> CH2 - BH2 = AC2 - AB2
=> CH2 - BH2 = AC2 + AC2 - BC2 (đpcm)
A B C E H
Ta có AB>AC(gt)
=>HB>HC(quan hệ giữa đường xiên và hình chiếu)
=>BE>CE(quan hệ giữa đường xiên và hình chiếu)