K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2020

   Tự kẻ hình nhé!                                                                                                                                   

a) Xét tam giác ABD và tam giác ACD ta có:

    \(\hept{\begin{cases}AB=AC\left(gt\right)\\DB=DC\left(gt\right)\\AD\left(chung\right)\end{cases}}\)

=> tam giác ABD= tam giác ACD (c-c-c)

b) Xét tam giác AEB và tam giác CEB ta có:

\(\hept{\begin{cases}EA=EC\left(gt\right)\\\widehat{AEM=\widehat{CEB\left(đđ\right)}}\\EB=EM\left(gt\right)\end{cases}}\)

=> tam giác AEB =tam giác CEB (c-g-c)

=> AM = BC ( 2 cạnh tương ứng)

 Mà BC = 2BD (gt)

=> AM = 2BD (đpcm)

c) Vì tam giác AEB = tam giác CEB (cmt)

=> \(\widehat{MAE}\)=   \(\widehat{ECB}\)( 2 góc tương ứng)

  Mà 2 góc này nằm ở vị trí so le trong

=> AM // BC (dhnb)       (1)

   Vì AB =  AC (gt) => tam giác ABC cân tại A (định nghĩa)

         Mà AD là đường trung tuyến tam giác ABC ( D là trung điểm của BC)

=> AD đồng thời là đường cao (tính chất)

=> AD vuông góc BC tại D        (2)

         Từ (1) và (2)  => AM vuông góc AD tại A (mối quan hệ từ vuông góc đến //)

                               => \(\widehat{MAD}\)=   \(_{^{ }90^0}\)(đpcm)

Chúc em hok tốt!!!!!

Bài 2

Bài làm

a) Xét tam giác ABM và tam giác DCM có:

BM = MC ( Do M là trung điểm BC )

^AMB = ^DMC ( hai góc đối )

MD = MA ( gt )

=> Tam giác ABM = tam giác DCM ( c.g.c )

b) Xét tam giác BHA và tam giác BHE có:

HE = HA ( Do H là trung điểm AE )

^BHA = ^BHE ( = 90o )

BH chung

=> Tam giác BHA = tam giác BHE ( c.g.c ) 

=> AB = BE

Mà tam giác ABM = tam giác DCM ( cmt )

=> AB = CD 

=> BE = CD ( đpcm )

Bài 3

Bài làm

a) Xét tam giác ABD và tam giác ACD có: 

AB = AB ( gt )

BD = DC ( Do M là trung điểm BC )

AD chung

=> Tam giác ABD = tam giác ACD ( c.c.c )

b) Xét tam giác BEC và tam giác MEA có:

AE = EC ( Do E kà trung điểm AC )

^BEC = ^MEA ( hai góc đối )

BE = EM ( gt )

=> Tam giác BEC = tam giác MEA ( c.g.c )

=> BC = AM

Mà BD = 1/2 . BC ( Do D là trung điểm BC )

hay BD = 1/2 . AM

Hay AM = 2.BD ( đpcm )

c) Vì tam giác ABD = tam giác ACD ( cmt )

=> ^ADB = ^ADC ( hai góc tương ứng )

Mà ^ADB + ^ADC = 180o ( hai góc kề bù )

=> ^ADB = ^ADC = 180o/2 = 90o 

=> AD vuông góc với BC                         (1)

Vì tam giác BEC = tam giác MEA ( cmt )

=> ^EBC = ^EMA ( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong

=> AM // BC                              (2)

Từ (1) và (2) => AM vuông góc với AD 

=> ^MAD = 90o 

# Học tốt #

20 tháng 3 2020

Giải:

Xét ΔAMK,ΔBCKΔAMK,ΔBCK có:
AK=KB(=12AB)AK=KB(=12AB)

K1ˆ=K2ˆK1^=K2^ ( đối đỉnh )

MK=KC(gt)MK=KC(gt)

⇒ΔAMK=ΔBCK(c−g−c)⇒ΔAMK=ΔBCK(c−g−c)

⇒A1ˆ=Bˆ⇒A1^=B^ ( góc t/ứng )

Xét ΔANE,ΔCBEΔANE,ΔCBE có:
AE=EC(=12AC)AE=EC(=12AC)

E1ˆ=E2ˆE1^=E2^ ( đối đỉnh )

BE=EN(gt)BE=EN(gt)

⇒ΔANE=ΔCBE(c−g−c)⇒ΔANE=ΔCBE(c−g−c)

⇒A2ˆ=Cˆ⇒A2^=C^ ( góc t/ứng )

Ta có: Aˆ+Bˆ+Cˆ=180oA^+B^+C^=180o ( tổng 3 góc của ΔABCΔABC )

⇒Aˆ+A1ˆ+A2ˆ=180o⇒A^+A1^+A2^=180o

⇒MANˆ=180o⇒MAN^=180o

⇒M,A,N⇒M,A,N thẳng hàng (1)

Vì ΔAMK=ΔBCKΔAMK=ΔBCK

⇒MA=BC⇒MA=BC ( cạnh t/ứng )

Vì ΔANE=ΔCBEΔANE=ΔCBE

⇒AN=BC⇒AN=BC

⇒MA=AN(=BC)⇒MA=AN(=BC) (2)

Từ (1) và (2) ⇒A⇒A là trung điểm của MN

Vậy A là trung điểm của MN

6 tháng 1 2019

a) Xét \(\Delta MDA\)và \(\Delta CDB\)có:
MD = DC (gt)
DA = DB (gt)
\(\widehat{MDA}=\widehat{BDC}\)(đối đỉnh)
=> \(\Delta MDA=\Delta CDB\left(c.g.c\right)\)

b) Vì \(\Delta MDA=\Delta CDB\left(cma\right)\Rightarrow\widehat{MAD}=\widehat{DBC}\)(2 góc tương ứng)
Mà \(\widehat{MAD}\)so le trong với \(\widehat{DBC}\)
=> AM // BC (đpcm)

c) Xét \(\Delta AEN\)và \(\Delta BEC\)có:
EN = BE (gt)
AE = EC (gt)
\(\widehat{AEN}=\widehat{BEC}\)(đối đỉnh)
\(\Rightarrow\Delta AEN=\Delta CEB\left(c.g.c\right)\)
\(\Rightarrow\widehat{NAE}=\widehat{ECB}\)(2 góc tương ứng)
Mà \(\widehat{NAE}\)so le trong với \(\widehat{ECB}\)
\(\Rightarrow\)AN // BC
Ta có :
AN // BC
MA // BC
\(\Rightarrow AN\equiv MA\)
\(\Rightarrow\)M;A;N  thẳng hàng (đpcm) 

9 tháng 1 2020

Bài 2:


40 A D B C

Vì \(\Delta ABC\)cân tại A mà \(\widehat{A}=40^o\)nên:

\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^o-40^o}{2}=\frac{140^o}{2}=70^o\)

Do CD là tia p/giác của ^ACB nên: ^BCD= 1/2. ^ACB= 1/2.700=350

Vì ^ADC là góc ngoài của \(\Delta BCD\)tại đỉnh D nên:

\(\Rightarrow\widehat{ADC}=\widehat{B}+\widehat{BCD}=70^o+35^0=115^o\)

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0

a) Xét tam giác ABM và tam giác DCM có:
AM = DM (gt)
BM = MC (gt)
góc BMA = góc DMC (2 góc đối đỉnh)
=> tam giác ABM = tam giác DCM (c.g.c)
b) Vì tam giác ABM = tam giác DCM (cmt)
=> góc ABM = góc DCM (2 góc tương ứng)
mà 2 góc này so le trong
=> AB//DC
c) Xét tam giác ABM và tam giác ACM có:
AB = AC (gt)
BM = MC (gt
AM là cạnh chung
=> tam giác ABM bằng tam giác ACM (c.c.c)
=> góc BMA bằng góc AMC
=> góc BMA = góc AMC = 1/2(góc BMA + góc AMC)
mà góc BMA + góc AMC = 180o (2 góc kề bù)
=> góc BMA = góc AMC = 1/2.180o = 90o
=> AM vuông góc với BC

9 tháng 12 2018

Câu c) bạn ghi lại chính xác giúp!

29 tháng 11 2016

A B M N C D E

a) xét tam giác ADM và tam giac BDC ta có

MD=DC (gt)

AD=DB(D là trung điểm AB)

góc ADM=góc BDC (2 góc doi đỉnh)

-> tam giác ADM= tam giác BDC (c-g-c)

b) ta có

góc MAD = góc DBC (  tam giác ADM= tam giác BDC )

mà 2 góc nẳm o vị trí soletrong

nên AM//BC

c) 

 xét tam giác AEN và tam giac BEC ta có

EN=EB (gt)

AE=EC(E là trung điểm AC)

góc AEN=góc BEC (2 góc doi đỉnh)

-> tam giác ANE = tam giác CBE (c-g-c)

-> góc NAE = góc BCE (2 góc tương ứng

mà 2 góc nằm o vi trí sole trong

nên AN//BC

ta có 

AN//BC (cmt)

AM//BC (cmb)

-> AM trùng AN

-> A,M,N thẳng hàng

29 tháng 11 2016

*-Bạn tự vẽ hình nhé!*

CM:a) Xét tam giác ADM và tam giác BDC có:

           AD=BD(D là trung điểm của AB)

           Góc ADM=góc BDC(đối đỉnh)

           DM=DC(gt)

   => tgiac ADM = tgiac BDC (c.g.c)

b) =>góc MAD= góc DBC (hai góc tương ứng)

   Mà 2 góc này ở vị trí so le trong

 => AM song song BC                                                                 (1)

c) chứng minh tương tự, ta có: tgiac AEN=tgiac CEB(c.g.c)

=> góc NAE= góc CEB(hai góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> BC song song AN                                                             (2)

Từ (1) và (2)=> MA song song BC; AN song song BC

=> A,M,N thẳng hàng (ơ-clit)

*- cho mk nha!!!-Mơn b *:)*