K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{6}=\dfrac{CD}{8}\)

mà BD+CD=10cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{30}{7}cm;CD=\dfrac{40}{7}cm\)

7 tháng 4 2020

b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7

7 tháng 4 2020

a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC

=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)

b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm

c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm

27 tháng 7 2017

Áp dụng hàm số cos, ta có: \(BC=\sqrt{6^2+12^2-2.6.12.\cos120^o}\)

\(d_a=\frac{2}{b+c}\sqrt{bc\left(p-a\right)}\)

Đến đây bạn tự làm nhé!

22 tháng 7 2018

a, \(\Delta ABC,\hat{BAC}=90^o\)

\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)

\(\Leftrightarrow10^2=6^2+AC^2\)

\(\Leftrightarrow AC^2=64\)

\(\Leftrightarrow AC=8\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào \(\Delta ABC, \hat{BAC}=90^o, AH\perp BC\) ta có:

\(AB^2=BH.BC\Leftrightarrow6^2=BH.10\Leftrightarrow BH=3,6\left(cm\right)\)

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)\(\Leftrightarrow AH^2=\frac{576}{25}\Leftrightarrow AH=4,8\left(cm\right)\)

Chu vi tam giác ABC: 6 + 10 + 8 = 24 (cm)

Diện tích tam giác ABC: \(\frac{4,8.10}{2}=24\left(cm^2\right)\)

22 tháng 7 2018

2 câu kia mình nghĩ sau

15 tháng 8 2021

mọi người giúp e với ạ e đg cần gấp

15 tháng 8 2021

a)Ta có: 62+82=102

   ⇒  AB2+AC2=BC2

  ⇒ ΔABC vuông tại A (Py-ta-go đảo)

b)Ta có:\(AB^2=BD.BC\Leftrightarrow BD=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\) (hệ thức lượng)

  Ta có: \(AC^2=CD.BC\Leftrightarrow CD=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4cm\) (HTL)

  Ta có: \(AD.BC=AB.AC\Leftrightarrow AD=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\) (HTL)

c)Vì P là hình chiếu của D trên AB

  ⇒DP⊥AB \(\Rightarrow\widehat{APD}=90^o\)

Xét ΔAPD và ΔADB có:

       \(\widehat{A}:chung\)

       \(\widehat{APD}=\widehat{ADB}=90^o\)

⇒ ΔAPD ∼ ΔADB (g-g)

 \(\Rightarrow\dfrac{AP}{AD}=\dfrac{AD}{AB}\Rightarrow AP.AB=AD^2\) (1)

Chứng minh tương tự,ta có: ΔADQ ∼  ΔACD (g-g)

                                      \(\Rightarrow\dfrac{AD}{AC}=\dfrac{AQ}{AD}\Rightarrow AC.AQ=AD^2\) (2)

Ta có: AD2 = BD.CD (HTL)   (3)

Từ (1)(2)(3)⇒AP.AB=AC.AQ=BD.CD=AD2

d)Xét tg APDQ có: \(\widehat{DPA}=\widehat{PAQ}=\widehat{AQD}=90^o\)

  ⇒ APDQ là hình chữ nhật

  ⇒ AD=PQ và \(\widehat{PDQ}=90^o\)

Ta có: AP.BP=DP2 (HTL trong ΔADB)

          AQ.CQ=DQ2 (HTL trong ΔADC)

⇒ AP.BP+AQ.CQ=DP2+DQ2=PQ2 (Py-ta-go trong ΔPDQ vuông tại D)

Mà PQ=AD ⇒ AP.BP+AQ.CQ=AD2

e) Ta có: PQ=AD (cmt)

Mà AD = 4,8 cm

⇒ PQ = 4,8 cm

 

 

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cmChứng minh ABC vuông tại A và tính độ dài đường cao AH;Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;Chứng minh: AEF và ABC đồng dạng.Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cmTính độ dài các đoạn thẳng: AB, AC, AH.Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.Bài 3:...
Đọc tiếp

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc 

Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm,
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH. 
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN

3
9 tháng 5 2021

mình chịu thoiii

12 tháng 7 2024

Gì nhiều vậy???

 

NV
25 tháng 7 2021

a.

\(AB^2+AC^2=4,5^2+6^2=56,25\)

\(BC^2=7,5^2=56,25\)

\(\Rightarrow AB^2+AC^2=BC^2\Rightarrow\Delta ABC\) vuông tại A theo Pitago đảo

b.

Theo định lý phân giác: \(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow DB=\dfrac{3}{4}DC\)

Mà \(DB+DC=BC=7,5\)

\(\Rightarrow\dfrac{3}{4}DC+DC=7,5\Rightarrow DC=\dfrac{30}{7}\left(cm\right)\)

Do DN và AB cùng vuông góc AC \(\Rightarrow DN||AB\)

Áp dụng định lý Talet:

\(\dfrac{DN}{AB}=\dfrac{DC}{BC}=\dfrac{4}{7}\Rightarrow DN=\dfrac{4}{7}AB=\dfrac{18}{7}\left(cm\right)\)

Tứ giác AMDN là hình chữ nhật (có 3 góc vuông)

Mà AD là đường chéo đồng thời là phân giác theo giả thiết

\(\Rightarrow AMDN\) là hình vuông

\(\Rightarrow S_{AMDN}=DN^2=\dfrac{324}{49}\approx6,6\left(cm^2\right)\)

NV
25 tháng 7 2021

undefined