K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Xét tam giác ADB và tam giác ADE có:

AD chung

góc BAD = góc EAD

AB = AE

=> Tam giác ADB = tam giác ADE

b, Câu này mình sửa lại đề là AD là trung trực của BE mới đúng nhé!

Từ câu a => BD = BE => D thuộc trung trực của BE (1)

Ta có AB = AE => A thuộc trung trực của BE (2)

Từ 1 và 2 suy ra AD là trung trực của BE

c, Từ câu a nên ta có góc ABD = góc AED => góc FBD = góc CED (cùng bù với 2 góc = nhau)

Xét tam giác FBD và tam giác CED có:

góc FBD = góc CED

BD = ED

góc BDF = góc EDC (đối đỉnh)

=> tam giác FBD = tam giác CED (g.c.g)

=> góc DBF = góc DEC (góc tương ứng)

mình sửa lại đề là góc BFD = góc ECD nhé!

=> góc BFD = góc ECD (góc tương ứng)

7 tháng 5 2017

vẽ mk hình dc k

5 tháng 5 2018

A B C D E F 1 2

a) Vì AD là tia phân giác của tam giác ABC => \(\widehat{A_1}=\widehat{A_2}\)

Xét tam giác ABD và tam giác ADE có : \(\hept{\begin{cases}AE=AB\left(GT\right)\\\widehat{A_1}=\widehat{A_2}\left(cmt\right)\\Chung\end{cases}AD=>}\)Tam giác ADB=Tam giác ADE (c-g-c)    (đpcm)

b) Vì tam giác ADB= tam giác ADE ( cmt phần a) => DB = DE ( cạnh tương ứng ) => D thuộc đường trung trực cuae BE (1)

  Vì AB=AE(GT) => A thuộc đường trung trực của BE  (2).Từ (1);(2)=> AD là đường trung trực của BE  (đpcm)

c)Vì tam giác ADB=tam giác ADE ( cmt phần ) => \(\widehat{ABD=}\widehat{AED}\)(góc tương ứng) và \(\widehat{ADB}=\widehat{ADE}\)(góc tương ứng )

  Vì\(\widehat{FBD}\)là góc ngoài tam giác ABD => \(\widehat{FBD}=\widehat{ABD}+\widehat{ADB}\)

Vì \(\widehat{DEC}\)là góc ngoài tam giác ADE => \(\widehat{DEC}=\widehat{ADE}+\widehat{AED}\)

       \(=>\widehat{FBD}=\widehat{DEC}\)

Xét tam giác BDF và tam giác ECD có : \(\hept{\begin{cases}\widehat{FBD}=\widehat{DEC}\\BD=CE\left(cmt\right)\\\widehat{BDF}=\widehat{ECD}\end{cases}}\)=> Tam giác BDF = Tam giác ECD  (đpcm)

=> \(\hept{\begin{cases}CE=BF\\\widehat{C}=\widehat{BFD}\end{cases}}\)

 Vì DE = DB(cmt phần b) => Tam giác DBE cân tại D => \(\widehat{DBE}=\widehat{DEB}\)

Mà \(\widehat{FBD}=\widehat{CED}\)(cmt)=> \(\widehat{FBD}+\widehat{DBE}=\widehat{CED}+\widehat{DEB}=>\widehat{FBE}=\widehat{CEB}\)

Xét tam giác BCE và tam giác EFB có : \(\hept{\begin{cases}\widehat{BFD}=\widehat{ECD}\left(cmt\right)\\BF=CE\left(cmt\right)\\\widehat{FBE}=\widehat{CEB}\end{cases}}\)=> Tam giác BCE = Tam giác EFB (g-c-g)   (đpcm)

d) Vì \(\widehat{FBD}\)là góc ngoài của tam giác ABC => \(\widehat{FBD}=\widehat{ABC}+\widehat{ACB}=>\widehat{FBD}>\widehat{ACB}\)

      Mà \(\widehat{FCB}=\widehat{CED}=>\widehat{CED}>\widehat{ACB}\)=> Tam giác DEC có DC>DE

mà DE=DB( cmt phần b)=> DB <DC

12 tháng 5 2019

Ảnh nè:

23 tháng 4 2017

a)xet tam giac abd va tam giac aed co 

ab=ae

ad la canh chunggoc bad = goc ead

=>tam giác abd = ead

b)gọi i là giao điểm của ad và be

xét tam giác abi và tam giác aei có :

ab=ae

ad là cạnh chung

goc bai = góc eai

=> tam giác abi= tâm giác aei

=>ib=ie =>ad là đường trung trực của be

cho mk 3 đi mk giải tiếp cho, bài nay mk vừa mới kiểm tra

23 tháng 4 2017

mk giải tiếp nè

theo câu a,b=>góc dbf= góc dec (kề bù do góc abd= aed)

xét tam giác bfd và ecd có

góc dbf= góc dec

bd=ed

bdf=edc

=> tam giác dbf= tam giác ecd

k cho mk đi.mk hứa mk tl hết cho mà

25 tháng 2 2018

a, Xét \(\Delta\)ABD và \(\Delta\)AED có:

AD- chung

AB=AE (gt)
góc BAD = góc DAC (AD là phân giác góc A)

=> hai tam giác bằng nhau (c.g.c) (đpcm)

=> góc ABC = góc AEK (hai góc tương ứng)

b, Xét \(\Delta\)AEK và \(\Delta\)ABC có:

góc A-chung

AB=AE (gt)

góc ABC = góc AEK (c.m.t)

=> hai tam giác bằng nhau (g.c.g)=> AK = AC (cặp cạnh tương ứng) => tam giác AKC cân tại A

c, vì tam giác AKC cân tại A lại có AD là phân giác góc A => AD cũng là đường cao của tam giác => AD vuông góc với KC (đpcm)