K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

undefined

 

Có \(\Delta ECB\) vuông tại E và có EM là đường trung tuyến

\(\Rightarrow EM=\dfrac{1}{2}BC=BM\) 

\(\Rightarrow\Delta EBM\) cân tại M

\(\Rightarrow\widehat{BEM}=\widehat{MBE}\)

mà \(\widehat{MBE}=\widehat{CAD}\) (vì cùng phụ góc BCA)

\(\Rightarrow\widehat{BEM}=\widehat{CAD}\) 

\(\Rightarrow\)EM là tiếp tuyến của (C1)

CM tương tự đc EM là tiếp tuyến của (C2)

1: góc HEP+góc HKP=180 độ

=>HEPK nội tiếp

2: Xét tứ giác BHCD có

BH//CD

BD//CH

=>BHCD là hbh

=>M là trung điểm của HD

Xét ΔAHD có DO/DA=DM/DH

nên OM/AH=DO/DA=1/2