Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình nghen:3333
a) ta có 13^2=169
5^2+12^2=25+144=169
=> 13^2=5^2+12^2
=> BC^2=AB^2+AC^2
=> tam giác ABC vuông tại A
b) Xét tam giác MKC và tam giác MBA có
AM=MK(gt)
BM=CM(gt)
KMC=BMA( đối đỉnh)
=> tam giác MKC= tam giác MBA( cgc)
=> CKM=MAB( hai góc tương ứng)
mà CKM so le trong với MAB=> KC//AB và AB vuông góc với AC=> KC vuông góc với AC
c) từ tam giác MKC=tam giác MBA=> AB=KC( hai cạnh tương ứng)
Xét tam giác BAC và tam giác KCA có
AB=KC(cmt)
AC chung
BAC=KCB(=90 độ)
=> tam giác BAC= tam giác KCA( cgc)
=> BC=AK( hai cạnh tương ứng)
=> 1/2 BC=1/2 AK
=> BM=CM=AM=KM
=> AM= BC/2=13/2=6,5cm
a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(13^2=5^2+12^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔMKC và ΔMAB có
MK=MA(gt)
\(\widehat{CMK}=\widehat{BMA}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔMKC=ΔMAB(c-g-c)
c) Ta có: ΔMKC=ΔMAB(cmt)
nên \(\widehat{MKC}=\widehat{MAB}\)(hai góc tương ứng)
mà \(\widehat{MKC}\) và \(\widehat{MAB}\) là hai góc ở vị trí so le trong
nên AB//KC(Dấu hiệu nhận biết hai đường thẳng song song)
hay KC⊥AC
a, Ta có : \(\left\{{}\begin{matrix}AB^2+AC^2=169\\BC^2=169\end{matrix}\right.\)
\(\Rightarrow AB^2+AC^2=BC^2\)
=> Tam giác ABC vuông tại A .
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
hay BC=13(cm)
b) Xét ΔMKC và ΔMAB có
MK=MA(gt)
\(\widehat{KMC}=\widehat{AMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔMKC=ΔMAB(c-g-c)
a) Xét ΔMAB và ΔMKC có
MA=MK(gt)
\(\widehat{AMB}=\widehat{KMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔMAB=ΔMKC(c-g-c)
a) Xét tam giác ABM và tam giác DCM có:
AM = DM (gt)
BM = MC (gt)
góc BMA = góc DMC (2 góc đối đỉnh)
=> tam giác ABM = tam giác DCM (c.g.c)
b) Vì tam giác ABM = tam giác DCM (cmt)
=> góc ABM = góc DCM (2 góc tương ứng)
mà 2 góc này so le trong
=> AB//DC
c) Xét tam giác ABM và tam giác ACM có:
AB = AC (gt)
BM = MC (gt
AM là cạnh chung
=> tam giác ABM bằng tam giác ACM (c.c.c)
=> góc BMA bằng góc AMC
=> góc BMA = góc AMC = 1/2(góc BMA + góc AMC)
mà góc BMA + góc AMC = 180o (2 góc kề bù)
=> góc BMA = góc AMC = 1/2.180o = 90o
=> AM vuông góc với BC
k nha con ngo
Cho tam giác ABC có AB =5cm, AC=12cm, BC =13cm
a) Tam giác ABC có dạng đặc biệt gì? Tại sao?
b) Cho trung tuyến AM của tam giác ABC. Trên tia đối tia ÂM lấy K sao cho MK=MÀ. Chứng minh tam giác MKC=MBA từ đó suy ra KC vuông góc vs AC
c) Tinh AM