Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $EF$ song song với $BC$ nên áp dụng định lý Thales ta có:
\(\frac{AE}{AB}=\frac{AF}{AC}\Leftrightarrow \frac{AE}{5}=\frac{AF}{9}\)
\(\Leftrightarrow 9AE=5AF\)
Mà \(AF=AC-FC=9-FC\)
\(\Rightarrow 9AE=5(9-FC)\)
Khi \(AE=CF\Rightarrow 9AE=5(9-AE)\)
\(\Leftrightarrow 14AE=45\Leftrightarrow AE=\frac{45}{14}\) (cm) \((<5\) cm)
Vậy điểm E nằm trên đoạn thẳng $AB$ sao cho \(AE=\frac{45}{14}\) cm
a) Học sinh tự chứng minh
b) nếu AEDF là hình thoi thì AD là phân giác của F A E ^ suy ra AD là phân giác của B A C ^