\(\frac{A}{2}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2016

Do mình chưa học lớp 9, nên không thể giải bài của bạn. Mình có tìm trên mạng và đã tìm được lời giải này cho bạn. Thực mình không hiểu đâu, mong bạn thông cảm.

Nguồn : http://diendantoanhoc.net/topic/81625-sinfraca2leq-fraca2sqrtbc/

Mình sử dụng công thức \(S=\frac{AB.AC.Sin_A}{2}.\).

Vẽ tia phân giác AD của góc A.Đặt \(l=AD\)

\(S_{ABC}=S_{ABD}+S_{ACD}\)

\(=\frac{cl.Sin_{\frac{A}{2}}}{2}+\frac{bl.Sin_{\frac{A}{2}}}{2}\)

\(=\frac{l.Sin_{\frac{A}{2}}\left(b+c\right)}{2}\)

Mặt khác \(S_{ABC}\le\frac{al}{2}\)

\(\Leftrightarrow Sin_{\frac{A}{2}}\le\frac{a}{b+c}\left(\le\frac{a}{2\sqrt{bc}}\right)\) :)

4 tháng 8 2016

minh biet lam cau b)

A B C D N M

ke phan giac AD  , BM vuong goc AD , CN vuong goc AD

sin \(\frac{A}{2}\) =\(\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\)

ma BM\(\le BD,CN\le CD\Rightarrow BM+CN\le BC\)

=> sin \(\frac{A}{2}\le\frac{BC}{AB+AC}\le\frac{a}{b+c}\)

dau = xay ra  <=> AD vuong goc BC  => AD la duong phan giac ,la  duong cao  => tam giac ABC can tai  A => AB=AC => b=c

tương tự sin \(\frac{B}{2}\le\frac{b}{a+c};sin\frac{C}{2}\le\frac{c}{a+b}\)

=>\(sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{a\cdot b\cdot c}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\)

ap dung cosi cjo 2 so duong   b+c\(\ge2\sqrt{bc};c+a\ge2\sqrt{ac};a+b\ge2\sqrt{ab}\)

=> \(\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge8abc\)

\(\Rightarrow sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{abc}{8abc}=\frac{1}{8}\)

dau = xay ra <=> a=b=c hay tam giac ABC deu

5 tháng 8 2016

nhìn bài toán kho hiểu nhỉ ???

18 tháng 7 2017

A B C D E x

Qui ước: Ax là p.g của A , đường vuông góc BD,CE

Ta có: \(\sin\frac{A}{2}=\frac{BD}{AB}=\frac{CE}{AC}=\frac{BD+CE}{AB+CA}\)(t/c dãy ts = nhau)

dễ dàng chứng minh \(BD+CE\le BC\)nên ta có đpcm

Dấu = xảy ra khi tam giác ABC cân ở A

19 tháng 7 2017

 tắt quá . mà có 2 phần mà sao ngắn vậy

9 tháng 8 2018

  A B C H

Kẻ BH \(\perp\)AC

Xét t/g ABH vg tại H

\(sinA=\frac{BH}{AB}\)

Xét t/g BHC vuông tại H

\(sinC=\frac{BH}{BC}\)

\(\Rightarrow\frac{sinA}{sinC}=\frac{\frac{BH}{AB}}{\frac{BH}{BC}}=\frac{BC}{AB}=\frac{a}{c}\)

\(\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\)

Tương tự \(\frac{a}{sinA}=\frac{b}{sinB}\)

\(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)