Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}\frac{1}{x+3y-1}=X\\\frac{1}{2x-y+3}=Y\end{matrix}\right.\)
Hệ phương trình trở thành:
\(\left\{{}\begin{matrix}2X-Y=5\\X+2Y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4X-2Y=10\\X+2Y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5X=15\\X+2Y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}X=3\\Y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x+3y-1}=3\\\frac{1}{2x-y+3}=1\end{matrix}\right.\) (nhân chéo) \(\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=\frac{1}{3}\\2x-y+3=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\frac{4}{3}\\2x-y=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\frac{4}{3}\\6x-3y=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\frac{4}{3}\\7x=-\frac{14}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{2}{3}\\y=\frac{2}{3}\end{matrix}\right.\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(-\frac{2}{3};\frac{2}{3}\right)\)
1.
Đường thẳng song song d nên nhận \(\left(2;3\right)\) là 1 vtpt
Phương trình: \(2\left(x-1\right)+3\left(y-1\right)=0\Leftrightarrow2x+3y-5=0\)
b.
\(S_{ABC}=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)
\(=\dfrac{1}{2}\left|-2.2-3.1\right|=\dfrac{7}{2}\)
c.
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{3}{2};\dfrac{5}{2}\right)\Rightarrow\overrightarrow{AM}=\left(\dfrac{1}{2};\dfrac{3}{2}\right)=\dfrac{1}{2}\left(1;3\right)\)
Pt tham số: \(\left\{{}\begin{matrix}x=1+t\\y=1+3t\end{matrix}\right.\)
d. Phương trình:
\(2\left(x-1\right)+1\left(y-1\right)=0\Leftrightarrow2x+y-3=0\)
a/ Trục Ox nhận \(\left(1;0\right)\) là 1 vtcp
Gọi đường thẳng cần tìm là d', do d' vuông góc \(Ox\Rightarrow\) d' nhận \(\left(1;0\right)\) là 1 vtpt và \(\left(0;1\right)\) là 1 vtcp
Phương trình tham số: \(\left\{{}\begin{matrix}x=-1\\y=2+t\end{matrix}\right.\)
Không tồn tại ptct của d'
Pt tổng quát: \(1\left(x+1\right)+0\left(y-2\right)=0\Leftrightarrow x+1=0\)
b/ Mình viết pt một cạnh, 1 đường cao và 1 đường trung tuyến, phần còn lại tương tự bạn tự làm:
\(\overrightarrow{AB}=\left(2;-5\right)\Rightarrow\) đường thẳng AB nhận \(\left(5;2\right)\) là 1 vtpt
Phương trình AB:
\(5\left(x-1\right)+2\left(y-4\right)=0\Leftrightarrow5x+2y-13=0\)
Gọi M là trung điểm BC \(\Rightarrow M\left(\frac{9}{2};\frac{1}{2}\right)\Rightarrow\overrightarrow{AM}=\left(\frac{7}{2};-\frac{7}{2}\right)=\frac{7}{2}\left(1;-1\right)\)
\(\Rightarrow\) Đường thẳng AM nhận \(\left(1;1\right)\) là 1 vtpt
Phương trình trung tuyến AM:
\(1\left(x-1\right)+1\left(y-4\right)=0\Leftrightarrow x+y-5=0\)
Gọi CH là đường cao tương ứng với AB, do CH vuông góc AB nên đường thẳng CH nhận \(\left(2;-5\right)\) là 1 vtpt
Phương trình CH:
\(2\left(x-6\right)-5\left(y-2\right)=0\Leftrightarrow2x-5y-2=0\)
a, \(\overrightarrow{AC}=\left(3;5\right)\)
Phương trình tham số đường thẳng AC: \(\left\{{}\begin{matrix}x=-1+3t\\y=-1+5t\end{matrix}\right.\)
b, Gọi I là trung điểm của BC
\(\Rightarrow I=\left(\dfrac{-1+2}{2};\dfrac{-1+4}{2}\right)=\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)
Phương trình đường thẳng BC là \(5x+y-14=0\)
Trung trực BC vuông góc với BC và đi qua trung điểm I có phương trình: \(x-5y+5=0\)
c, Phương trình đường thẳng AC: \(5x-3y+2=0\)
Đường thẳng BD đi qua B vuông góc với AC có phương trình: \(3x+5y-4=0\)
Gọi E là giao điểm của BD và AC
E có tọa độ là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-4=0\\5x-3y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{17}\\y=\dfrac{13}{17}\end{matrix}\right.\Rightarrow E=\left(\dfrac{1}{17};\dfrac{13}{17}\right)\)
\(\Rightarrow D=\left(\dfrac{2}{17}-3;\dfrac{26}{17}+1\right)=\left(-\dfrac{49}{17};\dfrac{43}{17}\right)\)
ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)
Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)
Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC
khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)
Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)
a.
\(\overrightarrow{BC}=\left(-2;-4\right)=-2\left(1;2\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtcp
Phương trình BC: \(\left\{{}\begin{matrix}x=-1+t\\y=4+2t\end{matrix}\right.\)
b.
\(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow R^2=AB^2=\left(-2\right)^2+1^2=5\)
Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-3\right)^2=5\)
c.
\(\overrightarrow{AB}.\overrightarrow{BC}=-2.\left(-2\right)+1.\left(-4\right)=0\Rightarrow AB\perp BC\)
\(\Rightarrow H\) trùng B hay tọa độ H là: \(H\left(-1;4\right)\)