Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua D, I lần lượt vẽ DM//BC, IN//BC (\(M,N\in BC\)) => DM // IN (quan hệ giữa ba đường thẳng song song)
\(\Delta\)EDM có I là trung điểm của DE và DM // IN nên EN = MN (1)
\(\Delta\)ABC cân tại A có DM //BC nên DB = MC
Kết hợp với AE = DB ( do AD = CE và AB = AC) suy ra AE = MC (2)
Từ (1) và (2) suy ra AN = CN
\(\Delta\)AKC có AN = CN và IN // KC (theo cách vẽ) nên AI = IK
Vậy AI = KI (đpcm)
Kẻ IN//BC; DM//BC
Xét ΔEDM có
I là trung điểm của ED
IN//DM
DO đó: N là trung điểm của ME
Vì DM//BC
nên góc ADM=góc AMD
=>AD=AM
mà AD=EC
nên AM=EC
=>N là trung điểm của AC
Xét ΔAKC có
N là trung điểm của AC
NI//KC
Do đó: I là trung điểm của AK
Xét tứ giác ADKE có
I là trung điểm chung của AK và DE
nên ADKE là hình bình hành
Bn có thể vào câu hỏi tương tự mà kham khảo nhiều lắm...
Kẻ IN//BC; DM//BC
Xét ΔEDM có
I là trung điểm của ED
IN//DM
DO đó: N là trung điểm của ME
Vì DM//BC
nên góc ADM=góc AMD
=>AD=AM
mà AD=EC
nên AM=EC
=>N là trung điểm của AC
Xét ΔAKC có
N là trung điểm của AC
NI//KC
Do đó: I là trung điểm của AK
Xét tứ giác ADKE có
I là trung điểm chung của AK và DE
nên ADKE là hình bình hành
B A C D E K I I' D'
Từ I vẽ đường thẳng II' // BC
Từ D vẽ đường thẳng DD' // BC
=> II' // DD' . Mà I là trung điểm của DE
=> EI' = I'D' ( 1 )
Vì \(\Delta\)ABC cân tại A có DD' // BC => DB = D'C ( 2 )
Mà AD = CE => AE = DB ( 3 )
Từ ( 2 ) và ( 3 ) => D'C = AE ( 4 )
Từ ( 1 ) và ( 4 ) => AI' = 'IC
\(\Delta\)AKC có II' // KC ; AI' = I'C
=>AI = IK ( Đpcm )
A B C D E F K
Từ D kẻ đt // với BC cắt AC tại K.
Ta có góc AKD=góc ACB
góc ADK=góc ABC
góc ACB= Góc ABC
=> góc ADK=góc AKD
=> tam giác ADK cân tại A=>AD=AK mà AB=AC
=>BD=CK mặt khác BD=CE
=>CK=CE
Xét tam giác DEK có C là tđ EK;CF//DK
=>F là tđ DE