K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2015

tick cho mình đi rồi mình giải câu c

25 tháng 10 2021

Ủa rồi cậu đã giải câu c) chưa?? 😃. Đã 4 năm rồi còn chưa thực hiện lời hứa =)))

29 tháng 6 2017

a, Chứng minh AH là đường trung bình của tam giác BCD

b, Sử dụng hệ thức giữa đường cao và các cạnh góc vuông trong tam giác vuông BCD và áp dụng câu a)

18 tháng 1 2021

A B C D E H O M

a) Từ O kẻ OM vuông góc với AD

Khi đó theo tính chất của đường kính và dây cung thì M là trung điểm AD

Lại có O là trung điểm AE => MO là đường trung bình của tam giác ADE

=> MO // DE , lại có MO // BC (cùng vuông góc với AD)

=> DE // BC

b) Tứ giác ABDC nột tiếp đường tròn (O) 

=> \(\widehat{ADB}=\widehat{BCA}\Leftrightarrow90^0-\widehat{ADB}=90^0-\widehat{BCA}\Rightarrow\widehat{CBD}=\widehat{ECB}\)

Lại có từ phần a, BED là hình thang vì có BC // DE

=> BCED là hình thang cân

30 tháng 1 2021

undefined

a, Xét ΔADE nội tiếp đường tròn đường kính AE

=> AD ⊥ DE (1)

LẠi có AH ⊥ BC = > AD ⊥ BC (2)

Từ (1) và (2) => DE // BC ( cùng vuông góc với AD) (*)

b,  Ta có: Tứ giác ABDC nội tiếp

=> ˆADBADB^ˆACBACB^

Lại có : ˆCBDCBD^ + ˆADBADB^ = ˆACBACB^  + ˆECBECB^ ( cùng bằng 90 độ)

=> ˆCBDCBD^ = ˆECBECB^ (**)

Từ (*) và (**) => BCED là hình thang cân

 

 

10 tháng 8 2016

GIẢI:

 

a) Xét Δ ABC và Δ AED, ta có :

\widehat{BAC}= \widehat{DAC}=90^0 (đối đỉnh)

AB = AD (gt)

AC = AD (gt)

=> Δ ABC = Δ AED (hai cạnh góc vuông)

=> BC = DE

Xét Δ ABD, ta có :

\widehat{BAC}=90^0 (Δ ABC vuông tại A)

=> AD \bot AE

=>  \widehat{BAD}=90^0

=> Δ ABD vuông tại A.

mà : AB = AD (gt)

=> Δ ABD vuông cân tại A.

=>\widehat{BDC}=45^0

cmtt : \widehat{BCE}=45^0

=> \widehat{BDC}=\widehat{BCE}=45^0

mà : \widehat{BDC},\widehat{BCE} ở vị trí so le trong

=> BD // CE

b) Xét Δ MNC, ta có :

NK \bot MC = > NK là đường cao thứ 1.

MH \bot NC = > MH là đường cao thứ 2.

NK cắt MH tại A.

=> A là trực tâm. = > CA là đường cao thứ 3.

=> MN \bot AC tại I.

mà : AB \bot AC

=> MN // AB.

c) Xét Δ AMC, ta có :

 \widehat{MAE}= \widehat{BAH} (đối đỉnh)

\widehat{MEA}= \widehat{BCA} (Δ ABC = Δ AED)

=>\widehat{MAE}=\widehat{MEA} (cùng phụ góc ABC)

=> Δ AMC cân tại M

=> AM = ME (1)

Xét Δ AMI và Δ DMI, ta có :

\widehat{AIM }= \widehat{DIM}=90^0 (MN \bot AC tại I)

IM cạnh chung.

mặt khác : \widehat{IMA }= \widehat{MAE} (so le trong)

\widehat{DMI }= \widehat{MEA} (đồng vị)

mà : \widehat{MAE}=\widehat{MEA} (cmt)

=> \widehat{IMA }= \widehat{IMD}

=> Δ AMI = Δ DMI (góc nhọn – cạnh góc vuông)

=> MA = MD (2)

từ (1) và (2), suy ta : MA = ME = MD

ta lại có : ME = MD = DE/2 (D, M, E thẳng hàng)

=>MA = DE/2.

29 tháng 6 2020

từ cách vẽ hình

 

30 tháng 8 2015

kẻ 1 đường thẳng vuông góc với BC cắt AC ở E

Xét tam giác CBE vuông tại B có:

1/BK^2=1/BC^2+1/BE^2 (hệ thức lượng)(1)

ta lại có:

*AH vuông góc với BC

BE vuông góc với BC

=>AH//BE (2)

*tam giác ABC cân tại A có:

AH là đường cao của tam gic1 ABC nên:

AH cũng là đường trung tuyến của tam giác ABC

=>H là trung điểm của BC (3)

từ (2) và (3) suy ra:

A là trung điểm của CE (4)

từ (3) và (4) suy ra:

AH là đường trung bình của tam giác CBE 

=> AH=BE/2

=>BE=2AH

=>BE2=4AH2 (5)

từ (1) và (5) suy ra:

1/BK^2=1/BC^2+1/4AH^2