K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

Bạn tự vẽ hình nha!

Gọi M là trung điểm của BE

Vì C là trung điểm của đoạn thẳng AE, M là trung điểm của đoạn thẳng BE nên CM là đường trung bình của tam giác ABE

=> CM//AB và CM=1/2AB

Ta có: CM//AB=> góc MCE=góc A( 2 góc đồng vị)

CM=1/2AB. Mà AB=AC( tam giác ABC cân tại A) nên CM=1/2AC.

Mặt khác: AD=1/2AC nên CM=AD

Xét tam giác ADB và tam giác CME có:

AB=CE( vì cùng bằng AC)

góc A= góc MCE ( cmt)

AD=CM (cmt)

=> tam giác ADB=tam giác CME ( c.g.c)

=> BD=ME

Mà ME=1/2BE nên BD=1/2BE

kích mk nha

26 tháng 7 2016

Cảm ơn bạn :*

31 tháng 7 2018

À câu này mình từng làm 1 lần rồi nè: https://olm.vn/hoi-dap/question/1274928.html

12 tháng 10 2016

ban oi de bi sai hay sao y 

13 tháng 10 2016

Làm sao mà BD cắt DE đk p 

3 tháng 8 2016

Bài 2

gọi E là trung điểm của KB

Vì tam giác CKB có BM=MC ; BE=EK

=>EM//KC

Vì tam giác ENM có AN=AM ; KA//EM

=>EK=KN

Vì KN=KE=EB=>NK=1/2KB

27 tháng 7 2018

mình cũng có câu 3 giông thế

25 tháng 6 2016

bài 1 làm sao vậy sao ko thấy mấy câu trả lời vậy bạn giúp mình giải bài tập số 1 với cảm ơn nhiều

a: Xét ΔBMC và ΔDMA có

MB=MD

góc BMC=góc DMA

MC=MA

=>ΔBMC=ΔDMA

=>góc MBC=góc MDA

=>BC//AD

b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

=>ABCD là hbh

=>AB=CD

=>CD=CA

=>ΔCAD cân tại C

c: Xét ΔEBD có

EM là trung tuyến

EC=2/3EM

=>C là trọng tâm

=>DC đi qua trung điểm của BE

6 tháng 8 2017

A B C D E F H

Qua D kẻ DH// BC( H thuộcAC)

xét tg DHCB có: DH//BC( cách vẽ) và DBC=HCB (vì tg ABC cân tại A)=> tg DHCB là hthang cân=> DB=HC

xét tg DHE có: HC=CE(= BD) va DH//FC( vì DH//BC, F thuộc BC)=> F là t/đ của DE

Nếu đúng xin háy k cho mk nha!

6 tháng 8 2017

Vẽ DG // BC và cắt AC tại G 

Do DG // BC nên tứ giác DGCB là hình thang ( đáy DG // BC), mà tam giác ABC cân tại A => góc B = C => DGBC là hình thang cân ( đáy DG // BC) => DB = GC ( tính chất của hình thang cân)

Mà DB = CE => GC = CE và C thuộc GE => C là tđ của GE 

Xét tam giác DGE có: C là tđ GE ; CF // DG ( Do DG // BC mà CF thuộc BC) => CF là đg trung bình ứng vs đáy DG của tam giác DGE => F là trung điểm của DE 

NOTE : cái này mik làm đại, nghĩ sao làm vậy, ko bik đúng hay sai, nếu sai thì đừng trách mik

12 tháng 7 2016

A B C D E F K

Từ D kẻ đt // với BC cắt AC tại K.

Ta có góc AKD=góc ACB

         góc ADK=góc ABC

        góc ACB= Góc ABC

=> góc ADK=góc AKD

=> tam giác ADK cân tại A=>AD=AK mà AB=AC

                                       =>BD=CK mặt khác BD=CE

                                       =>CK=CE

Xét tam giác DEK có C là tđ EK;CF//DK

=>F là tđ DE

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC