K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

Lời giải:

Do $BE$ là phân giác $\widehat{ABH}$ nên theo tính chất tia phân giác ta có:

$\frac{EH}{EA}=\frac{BH}{BA}(1)$

Xét tam giác $BAH$ và $BCA$ có:

$\widehat{B}$ chung

$\widehat{BHA}=\widehat{BAC}=90^0$

$\Rightarrow \triangle BAH\sim \triangle BCA$ (g.g)

$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}(2)$

Do $BD$ là phân giác $\widehat{BAC}$ nên:

$\frac{AD}{DC}=\frac{BA}{BC}(3)$

Từ $(1); (2); (3)\Rightarrow \frac{EH}{EA}=\frac{DA}{DC}$ (đpcm)

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

Hình vẽ:

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABC}\) chung

Do đó: ΔAHB∼ΔCAB(g-g)