Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AIMK có
\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)
=>AIMK là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MI//AC
Do đó: I là trung điểm của AB
Xét ΔBAC có
M,I lần lượt là trung điểm của BC,BA
=>MI là đường trung bình của ΔBAC
=>MI//AC và MI=AC/2
MI//AC
I\(\in\)MN
Do đó: MN//AC
Ta có: \(MI=\dfrac{AC}{2}\)
\(MI=\dfrac{MN}{2}\)
Do đó: MN=AC
Xét tứ giác ACMN có
MN//AC
MN=AC
Do đó: ACMN là hình bình hành
c: Xét ΔBAC có
M là trung điểm của CB
MK//AB
Do đó: K là trung điểm của AC
Xét ΔABC có
I,K lần lượt là trung điểm của AB,AC
=>IK là đường trung bình của ΔABC
=>IK//BC
=>IK//MQ
Ta có: ΔQAC vuông tại Q
mà QK là đường trung tuyến
nên \(QK=\dfrac{AC}{2}\)
mà MI=AC/2
nên QK=MI
Xét tứ giác MQIK có MQ//KI
nên MQIK là hình thang
Hình thang MQIK có MI=QK
nên MQIK là hình thang cân
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
a) ∆ABC có M, N lần lượt là trung điểm của AC, AB (gt) nên MN là đường trung bình của tam giác => MN // BC
b) Tứ giác AKCI có hai đường chéo IK và AC cắt nhau tại trung điểm của mỗi đường (AM = MC, IM = MK) nên là hình bình hành
c) ∆ABC có BM và CN là hai đường trung tuyến và P là trung điểm của BC nên AP là đường trung tuyến thứ ba => A, I, P thẳng hàng
Mà A, I, D thẳng hàng nên I, P, D thẳng hàng (đpcm)
d) Tứ giác AKCI là hình bình hành có đường chéo AC là phân giác của góc IAK nên là hình thoi => AC vuông góc IK
Do đó tam giác ABC phải cân tại B (có BM là đường cao cũng là trung tuyến)
Ở câu a từ trung tuyến suy ra được trung điểm luôn ah bạn?