K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DG
29 tháng 10 2020
a) Từ A kẻ AE//BD cắt đường thẳng CB tại E
=> ^BAE=^DBA=^B/2=60* và ^ABE=60* (kề bù với ^B)
=> ∆ABE đều nên AB=BE=AE=6
Do BD//AE suy ra: BD/AE=CB/CE
mà CE=CB+BE=12+6=18cm
ta có BD/6=12/18 suy ra BD=12.6/18=4 (cm)
b) Xét ∆ABM có AB=BM =6cm (do BM=MC=BC/2)
nên ∆ABM cân tại B mà BD là đường phân giác nên cũng là đường cao
do đó BD vuông góc với AM.
Ta có : Góc BAM = góc CAM = 60 độ (1) ( AM là tia phân giác của góc A )
Dựng tia Ax là tia đối của tia AB. => góc CAx = 180 - góc A = 60 độ (2)
Từ (1) và (2) => AC là đường phân giác ngoài tại đỉnh A của tam giác BAM.
do đường phân giác ngoài tại đỉnh A và tia phân giác trong tại đỉnh B của tam giác BAM cắt nhau tại N => MN là đường phân giác ngoài tại đỉnh M của tam giác BAM ( t/c hai đường phân giác của hai góc ngoài của tam giác và tia phân giác của góc trong không kề với chúng cắt nhau tại một điểm ) MN là phân giác của góc AMC
Chứng minh tương tự ta được KM là đường phân giác ngoài tại đỉnh M của tam giác CAM . MN là phân giác góc AMB.
ta có góc KMN là góc tạo bởi hai tia phân giác của 2 góc kề bù nên có số đo bằng 90 độ ( t/c này học ở lớp 6 )
nếu ko nhớ thì bạn có thể làm như sau :
góc KMN = góc KMA + AMN = ( BMA + AMC ) : 2 = 180 : 2 = 90 độ
bạn cho mình hỏi "t/c hai đường phân giác của hai của tam giác và tia phân giác trong không kề với chúng cắt nhau tại một điểm" là như nào vậy?