Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: Cho tam giác ABC vuông tại A
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}\)
=>\(\dfrac{BD}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC=10cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
=>\(BD=\dfrac{10}{7}\cdot3=\dfrac{30}{7}\left(cm\right);CD=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\left(cm\right)\)
a: BC=BD+CD
=15+20
=35(cm)
Xét ΔABC có AD là phân giác
nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
=>\(\dfrac{AB}{15}=\dfrac{AC}{20}\)
=>\(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)
=>AB=3k; AC=4k
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(\left(3k\right)^2+\left(4k\right)^2=35^2\)
=>\(25k^2=1225\)
=>\(k^2=49\)
=>k=7
=>\(AB=3\cdot7=21\left(cm\right);AC=4\cdot7=28\left(cm\right)\)
b:
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot21\cdot28=294\left(cm^2\right)\)
\(\dfrac{BD}{BC}=\dfrac{15}{35}=\dfrac{3}{7}\)
=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot294=126\left(cm^2\right)\)
Ta có: \(S_{ABD}+S_{ACD}=S_{ABC}\)
=>\(S_{ACD}+126=294\)
=>\(S_{ACD}=168\left(cm^2\right)\)
A B C H D 1 2 15cm 20cm 25cm
Xét t/gABC ta thấy AD là đường p/g của BAC
=>DB/DC=AB/AC (t/c phân giác)
Mà AB=15 cm ;AC=20cm nên ta có:
DB/DC=15/20
=> ta có tỉ lệ thức sau: DB/DB+DC=15/15+20 (t/c tỉ lệ thức)
=>DB/BC=15/35=>DB=15/35.BC=15/35.25=75/7(cm).
b) Ta kẻ AH _|_ BC
=>SABD=1/2AH.BD
=>SACD=1/2AH.DC
=>SABD/SACD=1/2AH.BD/1/2AH.DC=BD/DC
Mà ta thấy DB/DC=15/20=3/4
=> t/s SABD và SACD=3/4.
P/S: Bài này mik làm rồi nên hình mũi tên chỉ điển hình AB=15cm AC..... thôi nhé :< Cậu đừng ghi vào cũng được
a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)
BD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=35/7=5
=>DB=15cm; DC=20cm
b: AH=21*28/35=16,8cm
c: Xet ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
1)
A B H D c m n
Kẻ AH là đường cao của ABC
Ta có :\(S_{ABCD}=\frac{1}{2}.AH.BD ; S_{ADC}=\frac{1}{2}.AH.CD\)
\(\Rightarrow\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.BD}{\frac{1}{2}.AH.CD}=\frac{BD}{CD}\left(1\right)\)
\(\Delta ABC\)có AD là tia phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)
Từ (1)(2)
\(\Rightarrow\frac{S_{ABCD}}{S_{ACD}}=\frac{AB}{AC}=\frac{m}{n}\)
Vậy tỉ số của tam giác ABD và ACD là \(\frac{m}{n}\)
BC=căn 3^2+4^2=5cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4
=>BD/3=CD/4=5/7
=>BD=15/7cm; CD=20/7cm
\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
Xet ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7
=>BD=15/7cm; CD=20/7cm
giúp mình với ạ
BD/DC=AB/AC=9/21=3/7