K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2021

Chứng minh câu a và câu b

Gọi H là giao điểm của DE và AL.

Ta có : DE vuông góc AL tại H (giả thiết) => góc H1 = góc H= 90 độ

Xét tam giác ADH và tam giác AEH có : 

AH là cạnh chung ; góc H1 = H2 = 90 độ (cmt) ; góc A1 = A2 (tia AL là phân giác của góc A)

=> tam giác ADH = tam giác AEH (g.c.g) => AD = AE (đpcm) ; HD = HE; góc D = góc E1

Gọi T là giao điểm của hai đường thẳng BB' và AL.

Ta có : BB' // DE (giả thiết). Mà DE vuông góc AL tại H (giả thiết) => BB' vuông góc AL tại T => góc T1 = T2 = 90 độ.

Xét tam giác ABT và tam giác AB'T có :

góc A1 = A2 (tia AL là phân giác của góc A) ; AT là cạnh chung ; góc T1 = T2 = 90 độ.

=> tam giác ABT = tam giác AB'T (g.c.g) => AB = AB' (2 cạnh tương ứng)

Ta có: BD = AD - AB = AE - AB' = B'E (1) (do AD = AE và AB = AB' - chứng minh trên)

Trên đoạn thẳng DE lấy điểm V sao cho BV // AC .

Xét tam giác BVB' và tam giác EB'V có: 

góc V1 = B'2 (so le trong do BV // AC);  B'V là cạnh chung; góc V2 = B'3 (so le trong do BB' // DE)

=> tam giác BVB' = tam giác EB'V (g.c.g) => BV = B'E (2 cạnh tương ứng) (2)

Xét tam giác BMV và tam giác CME có : 

góc M1 = M2 (đối đỉnh); MB = MC (M là trung điểm BC); góc B2 = góc C (so le trong do BV // AC)

=> tam giác BMV = tam giác CME (g.c.g) => CE = BV (2 cạnh tương ứng) (3)

Từ (1) và (2) và (3) => BD = B'E = BV = CE (đpcm)

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12cm và HC=16 cm. Tính chu vi tam giác ABC.Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NAvuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)a) Chứng minh: NA = NB.b) Tam giác OAB là tam giác gì? Vì sao?c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.Chứng minh: ND = NE.d) Chứng minh ON ⊥ DEBài 4:...
Đọc tiếp

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12
cm và HC=16 cm. Tính chu vi tam giác ABC.
Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NA
vuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)
a) Chứng minh: NA = NB.
b) Tam giác OAB là tam giác gì? Vì sao?
c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.
Chứng minh: ND = NE.
d) Chứng minh ON ⊥ DE
Bài 4: Cho tam giác ABC cân tại A, Kẻ AH⊥BC (H ∈ BC)
a) Chứng minh góc ∠BAH = ∠CAH
b) Cho AH = 3 cm, BC = 8 cm. Tính độ dài AC.
c) Kẻ HE ⊥ AB, HD ⊥ AC . Chứng minh AE = AD.
d) Chứng minh ED // BC.
Bài 5: (3,5 điểm)
Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.
a) Chứng minh ∆DBA = ∆DBN.
b) Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh ∆BMC cân.
c) Chứng minh AB + NC > 2.DA.
Bài 6: (3,5 điểm)
Cho ∆ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D,
DN⊥BC tại N.
a) Chứng minh ∆ABD = ∆NBD.

3

b) Gọi K là giao điểm của hai đường thẳng BA và ND. Chứng minh ∆BKC cân.
Vẽ EH ⊥BC tại H. Chứng minh BC + AH > EK + AB.
Bài 7: (3,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.
a) Tính độ dài đoạn BC.
b) Vẽ BCAH tại H. Trên HC lấy D sao cho HD = HB.
Chứng minh: AB = AD.
c) Trên tia đối của tia HA lấy điểm E sao cho EH = AH. Chứng minh: ACED .
d) Chứng minh BD < AE.
Bài 5: (3 điểm) Cho ΔABC vuông tại A, kẻ phân giác BD của Bˆ (D thuộc AC), kẻ
BDAH (H thuộc BD), AH cắt BC tại E.
a) Chứng minh: ΔBHA = ΔBHE.
b) Chứng minh: BCED .
c) Chứng minh: AD < DC.
d) Kẻ BCAK (K thuộc BC). Chứng minh: AE là phân giác của KAˆC .
Bài 4: (3,5 điểm) Cho ΔABC vuông tại A, đường trung tuyến CM.
a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM.
b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC.
Chứng minh rằng ΔMAC = ΔMBD và AC = BD.
c) Chứng minh rằng AC + BC > 2CM.
d) Gọi K là điểm trên đoạn thẳng AM sao cho AM
3
2
AK

. Gọi N là giao điểm của

CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID.

giúp mk với

1
10 tháng 3 2022

tú wibu:)