Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M H K 1 2
Xét \(\Delta\)BMH và \(\Delta\)CMK có:
Góc BHM = góc CKM = 90 độ ( do BH \(⊥\)AM, CK \(⊥\)AM)
Góc M1 = góc M2 ( đối đỉnh)
BM = CM (M là trung điểm BC)
=> \(\Delta\)BMH = \(\Delta\)CMK (cạnh huyền.góc nhọn)
=> BH = CK (2 cạnh tương ứng) (dpcm)
B C A M H K GT KL ABC:AB<AC M là trung điểm của BC BH AM(H AM) CK AM(K AM
\(\text{Phần kết luận thì bạn tự viết nha do mình chưa biết câu hỏi}\)
\(\text{Nếu bài có hỏi là chứng minh }\Delta BHM=\Delta CKM\text{ thì mình sẽ chứng minh hộ luôn nha}\)
\(\text{Do M là trung điểm của BC}\left(gt\right)\Rightarrow BM=CM\)
\(\text{Do }BH\perp AM\Rightarrow\widehat{BHM}=90^o\left(1\right)\)
\(\text{Do }CK\perp AM\Rightarrow\widehat{CKM}=90^o\left(2\right)\)
\(\text{Từ (1) và (2)}\Rightarrow\widehat{BHM}=\widehat{CKM}=90^o\)
\(\text{Xét }\Delta BHM\text{ và }\Delta CKM\text{ có:}\)
\(\)\(\widehat{BHM}=\widehat{CKM}\left(cmt\right)\left(3\right)\)
\(BM=CM\left(cmt\right)\left(4\right)\)
\(\)\(\widehat{BMH}=\widehat{CMK}\left(\text{đối đỉnh}\right)\left(5\right)\)
\(\text{Từ (1),(2) và (3)}\Rightarrow\Delta BHM=\Delta CKM\left(g.c.g\right)\)
a1, Xét tam giác AMB và tam giác AMC có :
AM chung
B=C(tam giác ABC cân )
AB=AC9tam giác ABC cân)
Do đó tam giác AMB=tam giác AMC(c.g.c)
a2, Vì tam giác AMB=tam giác AMC( cmt)
=>Bam=Cam ( 2 góc tương ứng)
=>AM là tia p/g góc A
Mình ms làm xong câu a thôi đợi mình nghĩ nót câu kia đã. bạn tick nha mình đảm bảo đúng
A B C D H K M N O
tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB
ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)
suy ra AM = AN ( 2 cạnh tương ứng )
tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân
b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )
dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )
suy ra BA = Ck ( 2 cạnh tương ứng )
c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân
\(\Delta AHK\)và \(\Delta AMN\) có chung đỉnh
mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)
mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN
d) kéo dài HB và CK cắt nhau tại O
nối AO
xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)có
AO là cạnh huyền chung
AH = AK
do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )
e) xét tam giác \(BAD\)và \(\Delta CAD\)có
BA = CA ( tam giác ABC cân tại A )
DA = DC (gt)
AD là canh chung
do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)
phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã
tiếp nhé
suy ra góc BAD = góc CAD ( 2 góc tương ứng )
vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)
ta có BH = CK ( cmt)
và HO = KO (cmt)
suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )
hay BO = OC
xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)
do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)
suy ra góc BAO = góc CAO ( 2 góc tương ứng )
vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)
từ (1) và (2) suy ra A;D;O thẳng hàng
a) Xét tgiac BHM và CKM có:
+ góc BHM = CKM = 90 độ
+ góc BMH = CMK (hai góc đối đỉnh)
+ BM = CM
=> tgiac AHM = CMK (ch-gn)
=> BH = CK (đpcm)
b) Vì tgiac AHM = CMK (cmt) => HM = MK => M là trung điểm HK
Cảm ơn bạn nhé ! =)))