K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2023

Xét ΔFHA vuông tại F và ΔACB vuông tại A có

\(\widehat{FHA}=\widehat{ACB}\left(=90^0-\widehat{HAC}\right)\)

Do đó: ΔFHA đồng dạng với ΔACB

=>\(\dfrac{AF}{AB}=\dfrac{HA}{CB}\)

Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>AH=EF

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(EF\cdot BC=AH\cdot BC\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\)

\(\dfrac{AE\cdot AB}{EF\cdot BC}=\dfrac{AH^2}{AH\cdot BC}=\dfrac{AH}{BC}=\dfrac{AF}{AB}\)

22 tháng 9 2021

tam giác AHB vuông tại H , đường cao HE có
AH2=AE.AB
tam giác AHC vuông tại H , đường cao HF có
AH2=AF.AC
=>   AE.AB=AF.AC

Chứng minh: HB/HC = (AB/AC)2
tam giác ABC vuông tại A , đường cao AH có
AB2=HB.BC
AC2=HC.BC
\(\dfrac{AB^2}{AC^2}=\dfrac{HB.BC}{HC.BC}\)
<=>   \(\dfrac{AB^2}{AC^2}=\dfrac{HB}{HC}\)
<=>  HB/HC = (AB/AC)2
 

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)

b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

17 tháng 12 2023

a: Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)

=>\(BC^2=6^2+7^2=36+49=85\)

=>\(BC=\sqrt{85}\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot\sqrt{85}=6\cdot7=42\)

=>\(AH=\dfrac{42}{\sqrt{85}}\)

Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(AH=EF=\dfrac{42}{\sqrt{85}}\left(cm\right)\)

b: Sửa đề: Chứng minh \(AE\cdot AB=AF\cdot AC\)

Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

b: Xét ΔHBA vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)