Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(A=\frac{10^{2019}+2}{10^{2019}-1}=\frac{10^{2019}-1+3}{10^{2019}-1}=1+\frac{3}{10^{2019}-1}\)
\(B=\frac{10^{2019}}{10^{2019}-3}=\frac{10^{2019}-3+3}{10^{2019}-3}=1+\frac{3}{10^{2019}-3}\)
Mà \(\frac{3}{10^{2019}-1}>\frac{3}{10^{2019}-3}\)
\(\Rightarrow1+\frac{3}{10^{2019}-1}>1+\frac{3}{10^{2019}-3}\\ \Rightarrow A>B\)
\(C=\frac{29^{2019}+1}{29^{2019}-1};D=\frac{29^{2019}-1}{29^{2019}-3}\)
Đặt phân số trung gian là \(\frac{29^{2019}-1}{29^{2019}-1}\)
\(\Rightarrow C>\frac{29^{2019}-1}{29^{2019}-1}>D\)
Từ đó suy ra C > D.
Ta có : \(C=\frac{29^{2019}+1}{29^{2019}-1}>\frac{29^{2019}-1}{29^{2019}-1}\)( tử lớn hơn )
\(D=\frac{29^{2019}-1}{29^{2019}-3}< \frac{29^{2019}-1}{29^{2019}-1}\)( mẫu lớn hơn thì nhỏ hơn )
\(\Rightarrow C>\frac{29^{2019}-1}{29^{2019}-1}>D\)
\(\Leftrightarrow C>D\)
Ai trả lời là k,k cần cần trả lời nh j và đúng hay sai đâu nha
\(A=\frac{2018^{2019}+1}{2018^{2019}-2017}=\frac{2018^{2019}-2017+2018}{2018^{2019}-2017}=\frac{2018^{2019}-2017}{2018^{2019}-2017}+\frac{2018}{2018^{2019}-2017}=1+\frac{2018}{2018^{2019}-2017}\)\(B=\frac{2018^{2019}+2}{2018^{2019}-2016}=\frac{2018^{2019}-2016+2018}{2018^{2019}-2016}=\frac{2018^{2019}-2016}{2018^{2019}-2016}+\frac{2018}{2018^{2019}-2016}=1+\frac{2018}{2018^{2019}-2016}\)Ta có: \(2018^{2019}-2017< 2018^{2019}-2016\)
\(\Rightarrow\frac{2018}{2018^{2019}-2017}>\frac{2018}{2018^{2019}-2016}\)
\(\Rightarrow1+\frac{2018}{2018^{2019}-2017}>1+\frac{2018}{2018^{2019}-2016}\)
\(\Rightarrow A>B\)
Vậy...
Ta có :
\(A=\frac{2018^{2019}+1}{2018^{2019}-2017}=\frac{2018^{2019}-2017+2018}{2018^{2019}-2017}=1+\frac{2018}{2018^{2019}-2017}\)
\(B=\frac{2018^{2019}+2}{2018^{2019}-2016}=\frac{2018^{2019}-2016+2018}{2018^{2019}-2016}=1+\frac{2018}{2018^{2019}-2016}\)
Vì \(2018^{2019}-2017< 2018^{2019}-2016\)nên \(\frac{2018}{2018^{2019}-2017}>\frac{2018}{2018^{2019}-2016}\)hay \(A>B\)
~ Hok tốt ~
\(T=2019^0+2019^1+2019^2+...+2019^{2011}\)
\(\rightarrow2019T=2019\left(2019^0+2019^1+2019^2+...+2019^{2011}\right)\)
\(\rightarrow2019T=2019^1+2019^2+2019^3+...+2019^{2012}\)
\(\rightarrow2019T-T=(2019^1+2019^2+2019^3+...+2019^{2012})-\left(2019^0+2019^1+...+2019^{2011}\right)\)
\(\rightarrow2018T=2019^{2012}-2019^0=2019^{2012}-1\)
\(\rightarrow2018T+1=2019^{2012}-1+1=2019^{2012}\)
T = 20190 + 20191 + 20192 +...+20192011
T = 1 + 20191 + 20192 +...+ 20192011
2019T = 20191 + 20192 +20193 +...+20192012
2019T - T = (20191 + 20192 +20193 +...+20192012) - (1 + 20191 + 20192 +...+ 20192011)
2018T = 20192012 - 1
=> 2018T + 1 = 20192012