Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên ta biến đổi BĐT thành
\(\left(1+3x\right)\left(1+\dfrac{8y}{x}\right)\left(1+\dfrac{9z}{y}\right)\left(1+\dfrac{6}{z}\right)\ge7^4\)
BĐT trên được suy ra trực tiếp từ BĐT Huygens
Đẳng thức xảy ra khi \(x=2;y=\dfrac{3}{2};z=1\)
P/s: Hay quá mới sáng nay thấy BĐT này giờ thực hành luôn
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
Câu hỏi của Đỗ Tuấn Linh - Toán lớp 9 - Học toán với OnlineMath
Câu 1: \(P=\sum\frac{1}{\left(1+\frac{1}{x}\right)^2}\) đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)
Nó chính là dòng 5 trở đi của bài 4 này, ko làm lại nữa nhé:
Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến
Câu 2:
\(\frac{a^3}{\left(a^2+b^2+a^2\right)\left(a^2+a^2+c^2\right)}\le\frac{a^3}{\left(a^2+ab+ac\right)^2}=\frac{a}{\left(a+b+c\right)^2}\)
Tương tự, cộng lại và rút gọn sẽ có đpcm
Vũ Minh Tuấn, Băng Băng 2k6, Phạm Lan Hương, Pumpkin Night, No choice teen, HISINOMA KINIMADO,
tth, Nguyễn Lê Phước Thịnh, Chu Tuấn Minh, Lê Thị Hồng Vân, @Trần Thanh Phương, @Nguyễn Việt Lâm,
@Akai Haruma
giúp e vs ạ! thanks trước
Lời giải:
Khai triển, BĐT cần chứng minh tương đương với
\(64(xy+yz+xz)-63xyz\geq 192\)
Không mất tính tổng quát, giả sử \(z=\max (x,y,z)\Rightarrow z\geq \frac{4}{3}\)
Đặt \(f(x,y,z)=64(xy+yz+xz)-63xyz\)
Ta sẽ chứng minh \(f(x,y,z)\geq f\left(\frac{x+y}{2},\frac{x+y}{2},z\right)\)
\(\Leftrightarrow 64(xy+yz+xz)-63xyz\geq 64\left [ \left ( \frac{x+y}{2} \right )^2+z(x+y) \right ]-63z\left ( \frac{x+y}{2} \right )^2\)
\(\Leftrightarrow \frac{64(x-y)^2}{4}\leq \frac{63z(x-y)^2}{4}\Leftrightarrow z\geq\frac{63}{64}\)
Điều này hiển nhiên đúng vì \(z\geq \frac{4}{3}>\frac{63}{64}\)
Bây giờ ta chỉ cần chỉ ra \(f\left(\frac{x+y}{2},\frac{x+y}{2},z\right)\geq 192\)
\(\Leftrightarrow 64\left [ \left ( \frac{x+y}{2} \right )^2+z(x+y) \right ]-63z\left ( \frac{x+y}{2} \right )^2\geq 192\)
\(\Leftrightarrow 64z(4-z)+16(4-z)^2-\frac{63}{4}z(4-z)^2\geq 192\Leftrightarrow 63z^3-312z^2+496z-256\leq 0\)
\(\Leftrightarrow (3z-4)^2(7z-16)\leq 0\Leftrightarrow z\leq \frac{16}{7}\)
BĐT trên đúng vì \(x,y>1\Rightarrow z=4-x-y<2<\frac{16}{7}\)
Do đó \(f(x,y,z)\geq f\left(\frac{x+y}{2},\frac{x+y}{2},z\right)\geq 192\)
Chứng minh hoàn tất. Dấu bằng xảy ra khi \(x=y=z=\frac{4}{3}\)
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
A
Áp dụng BĐT cosi ta có
\(\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)
\(x\sqrt{5-4x^2}\le\frac{x^2+5-4x^2}{2}=\frac{-3x^2+5}{2}\)
Khi đó
\(A\le3x+\frac{-3x^2+5}{2}=\frac{-3x^2+6x+5}{2}=\frac{-3\left(x-1\right)^2}{2}+4\le4\)
MaxA=4 khi \(\hept{\begin{cases}2x-1=1\\x^2=5-4x^2\\x=1\end{cases}\Rightarrow}x=1\)
B
Áp dụng BĐT cosi ta có :
\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)
=> \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
=> \(B\le\frac{xyz.\left(\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+xz\right)}=\frac{xyz.\left(\sqrt{3}+1\right)}{\left(xy+yz+xz\right)\sqrt{x^2+y^2+z^2}}\)
Lại có \(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\); \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)
=> \(\sqrt{x^2+y^2+z^2}\left(xy+yz+xz\right)\ge3\sqrt[3]{x^2y^2z^2}.\sqrt{3\sqrt[3]{x^2y^2z^2}}=3\sqrt{3}.xyz\)
=> \(B\le\frac{\sqrt{3}+1}{3\sqrt{3}}=\frac{3+\sqrt{3}}{9}\)
\(MaxB=\frac{3+\sqrt{3}}{9}\)khi x=y=z
Câu a đề hơi sai nha bạn, nên mình chỉ giải câu b thoi
Áp dụng AM-GM cho các bộ 3 số dương (x,y,z) và (1/x,1/y,1/z):
\(x+y+z\ge3\sqrt[3]{xyz}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)
\(\Rightarrow P\ge6\sqrt[3]{xyz}+\frac{3}{\sqrt[3]{xyz}}\ge2\sqrt{6\sqrt[3]{xyz}.\frac{3}{\sqrt[3]{xyz}}}=6\sqrt{2}\)(BĐT Cô-si)
Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{2}}\)( thỏa x,y,z thuộc (0;1))
Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.
\(BDT\Leftrightarrow\frac{\left(1+3x\right)\left(x+8y\right)\left(y+9z\right)\left(z+6\right)}{xyz}\ge7^4\)
\(\Leftrightarrow\left(1+3x\right)\left(1+\frac{8y}{x}\right)\left(1+\frac{9z}{y}\right)\left(1+\frac{6}{z}\right)\ge7^4\)
Áp dụng BĐT Huygens ta có:
\(VT\ge\left(1+\sqrt[4]{3x\cdot\frac{8y}{x}\cdot\frac{9z}{y}\cdot\frac{6}{z}}\right)=7^4=VP\)
Khi \(x=2;y=\frac{3}{2};z=1\)