Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=x^3+y^3+9xy=\left(x+y\right)^3-3xy\left(x+y\right)+9xy=3^3-3xy.3+9xy=27-9xy+9xy=27\)
\(N=x^3+y^3+9xy\)
\(N=\left(x+y\right)^3-3xy\left(x-y\right)+9xy\)
\(N=\left(3^3\right)-3xy.3+9xy\)
\(N=27-9xy+9xy\)
\(N=27\)
Vậy N = 27
(x+y)^3=x^3+y^3+3xy(x+y)=1
=>3xy(x+y)+2=1
=>3xy(x+y)=-1?(vì x+y=1)
=>xy=-1/3=M
b) (x+y)^2=x^2+y^2+2xy=1 =>x^2+y^2=1-2xy=1-2.(-1/3)=5/3
(x^2+y^2)(x^3+y^3)=x^5+y^5 +x^2.y^3+x^3.y^2=x^5+y^5+x^2.y^2(x+y)=...(ráp số vô rồi tính ra kết quả nhé :) )
C1: Ta có: \(x-y=7\Leftrightarrow\left(x-y\right)^2=49\Leftrightarrow x^2-2xy+y^2=49\Leftrightarrow x^2+y^2=49+2xy=49+2.60=169\)
=>\(B=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=7\left(169+60\right)=7.229=1603\)
C2: \(B=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]=7\left(7^2+3.60\right)=7.229=1603\)
\(\hept{\begin{cases}xyz=12\\x^3+y^3+z^3=36\end{cases}}\Leftrightarrow x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-3xyz+z^3=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
\(\Leftrightarrow x=y=z\left(x+y+z>0\right)\)
Thay x=y=z vào r tính thôi bạn
2(x-y)(x2+xy+y2)- 3(x2+2xy+y2) = 4(x2+xy+y2) - 3x2-6xy-3y2 = 4x2+4xy+4y2 - 3x2-6xy-3y2 = x2-2xy+y2 = (x-y)2
a) A = 5(x + 3)(x - 3) + (2x + 3)2 + (x - 6)2 = 5(x2 - 9) + (4x2 + 12x + 9) + (x2 - 12x + 36) = 10x2
Tại x = -2,A = 10.(-2)2 = 40
b) x2 + y2 = x2 + 2xy + y2 - 2xy = (x + y)2 - 2.(-25) = 102 + 50 = 150
\(N=\left(x+y\right)^3-3xy\left(x+y\right)+9xy\)
\(=3^3-3\cdot xy\cdot3+9xy=27\)