Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bạn tự vẽ hình nha)
Vì xOy và yOz là hai góc kề bù
=> Tia Oy nằm giữa ai tia Ox và Oz(1)
xOy + yOz = 180o
Vì Oa là tia phân giác của xOy
=> Tia Oa nằm giữa 2 tia Ox và Oy(2)
xOa = aOy = 1/2 xOy
Vì Ob là tia phân giác của yOz
=> Tia Ob nằm giữa hai tia Oy và Oz(3)
yOb = bOz = 1/2 yOz
Từ (1); (2) và (3) => Tia Oy nằm giữa hai tia Oa và Ob
=> aOb = aOy + yOb =\(\frac{1}{2}\widehat{xOy}+\frac{1}{2}\widehat{yOz}=\frac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)=\frac{1}{2}\times180^o=90^o\)
=> Oa vuông góc với Ob (đpcm)
x O z y m n
Om là phân giác góc xOy
=> góc mOy = 1/2 góc xOy
On là phân giác góc yOz
=> góc yOn = 1/2 góc yoz
suy ra: góc mOy + góc yOn = 1/2 (góc xOy + góc yOz)
<=> góc mOn = 1/2.1800 = 900 (do góc xOy và góc yOz kề bù)
Om phân giác xoy => moy=1/2xoy hay xoy=2moy
tương tự => noy=1/2yoz hay yoz=2noy
Lại có:
xoy+yoz=180
=>2moy +2noy=180
=>moy+noy=90 hay mon =90
Bạn tự vẽ hình nha ==''
a.
xOA + AOB + BOy = xOy
300 + AOB + 300 = 900
AOB = 900 - 600
AOB = 300
mà xOA = 300
=> AOB = xOA
=> OA là tia phân giác của xOB
b.
AOy = AOB + BOy = 300 + 300 = 600
mà AOy = yOC (Oy là tia phân giác của AOC)
=> yOC = 600
BOC = BOy + yOC = 300 + 600 = 900
=> OB _I_ OC
a ) Vì Oa ⊥⊥ OM
=> aOmˆaOm^ = 90o
Mà MOaˆMOa^ + aONˆaON^ = MONˆMON^
=> aOnˆaOn^ = MONˆMON^ - MOaˆMOa^ = 120o - 90o = 30o
Vậy aONˆaON^ = 30o
Vì Ob ⊥⊥ ON
=> bONˆbON^ = 90o
Mà bOMˆbOM^ + bONˆbON^ = MONˆMON^
=> bOMˆbOM^= MONˆMON^ - bONˆbON^ = 120o - 90o = 30o
Vậy bOMˆbOM^ = aONˆ
o x a z y a 60 120
câu a) a thuộc ox suy ra x , a , o thằng hàng
suy ra zAo kề bù với zAx
tổng 2 góc kề bù = 180
mà zAo=60 suy ra zAx=180-60=120
vậy az // với oy " 2 góc =120 " đồng vị
Ta có góc xoy+yoz=180 độ (kề bù)
=> 1/2 góc xoy+1/2 góc yoz = 90 độ
=> góc yom + góc yon=90 độ
=> góc mon =90 độ hay om vuông góc với on
\(\widehat{aOy}=\dfrac{\widehat{xOy}}{2}\)
\(\widehat{bOy}=\dfrac{\widehat{zOy}}{2}\)
Do đó: \(\widehat{aOy}+\widehat{bOy}=\dfrac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)=\dfrac{1}{2}\cdot180^0\)
hay \(\widehat{aOb}=90^0\)(đpcm)