Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm nốt câu d) bài 3 nhé.
d) Vì \(\widehat{B}=\widehat{C}\left(cmt\right)\)
Mà \(\widehat{C}=50^0\left(gt\right)\)
=> \(\widehat{B}=\widehat{C}=50^0.\)
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (định lí tổng 3 góc trong một tam giác).
=> \(\widehat{A}+50^0+50^0=180^0\)
=> \(\widehat{A}+100^0=180^0\)
=> \(\widehat{A}=180^0-100^0\)
=> \(\widehat{A}=80^0.\)
Hay \(\widehat{BAC}=80^0.\)
Vậy \(\widehat{BAC}=80^0.\)
Chúc bạn học tốt!
Hình bạn tự vẽ nha!
Bài 3:
a) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại \(A.\)
=> \(\widehat{B}=\widehat{C}\) (tính chất tam giác cân).
b) Xét 2 \(\Delta\) \(ABH\) và \(ACH\) có:
\(AB=AC\left(gt\right)\)
\(BH=CH\) (vì H là trung điểm của \(BC\))
Cạnh AH chung
=> \(\Delta ABH=\Delta ACH\left(c-c-c\right).\)
=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
=> \(AH\) là tia phân giác của \(\widehat{BAC}.\)
c) Vì \(\Delta ABC\) cân tại \(A\left(cmt\right)\)
Có \(AH\) là đường phân giác (cmt).
=> \(AH\) đồng thời là đường trung trực của \(\Delta ABC.\)
=> \(AH\) là đường trung trực của \(BC.\)
Chúc bạn học tốt!
Hình bạn tự vẽ nha!
Ta có:
AH_|_BC(AH là đường cao tam giác ABC)
DK_|_BC(DK là đường trung trực của BC)
=>AH//DK(t/c đường thẳng song song)
=>góc AED=góc EDK(so le trong) (1)
=>góc BEH=góc EDK( 2 góc đồng vị) (2)
Từ (1),(2) suy ra:
góc AED=góc BEH=góc EDK=góc BDK(do E là giao điểm của AH và BD)
Mặt khác:
Xét tam giác BKD và tam giác DKC,có:
DK cạnh chung
BK=KC( K là trung điểm của BC)
góc BKD=góc DKC=1 vuông
=> tam giác BKD=tam giác DKC(c.g.c)
=>BD=DC
=>tam giác BDC cân tại D
Nên góc BDK=góc CDK(t/c tam giác cân) (3)
Lại do: AH//DK
=>góc CDK=góc DAH( 2 góc đồng vị) (4)
Từ (3),(4)=>góc BDK=góc DAH
Mà góc AED=góc BDK( so le trong)
E là giao điểm của BD và AH(gt)
Nên E nằm giữa BD và AH
=>góc DAE=góc DAH=góc AED
=>tam giác ADE cân tại D ( đpcm)
Xét \(\Delta AOD\)và \(\Delta COB\)
\(OA=OC\left(gt\right)\)
\(AOD=COB\left(=90-DOC\right)\)
\(OD=OB\left(gt\right)\)
\(\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\Rightarrow ADO=CBO\left(1\right)\)
Gọi giao điểm của BF và OD là M
\(\)Ta có \(FMD=OMB\left(2\right)\)(đối đỉnh)
\(\left(1\right)\left(2\right)\Rightarrow ADO+FMD=OMB+CBO\Rightarrow FDM+FMD=MBO+OMB\)
\(\Rightarrow180-MFD=180-MOB=180-90\left(MOB=DOB=90\right)\Rightarrow MFD=90\)
Vậy \(BF\perp AD\)
O x y z t A B C D F 1 2 3 E
Gọi E là giao điểm của Oy và AD
Ta có: \(\widehat{O_1}+\widehat{O_2}=\widehat{COB}\)(do tia OA nằm giữa hai tia OC và OB)
\(\widehat{O_3}+\widehat{O_2}=\widehat{AOD}\)(do tia OB nằm giữa hai tia OA và OD)
Mà \(\widehat{O_1}=\widehat{O_3}=90^o\)(do \(Oz\perp Ox,Ot\perp Oy\))
Do đó: \(\widehat{COB}=\widehat{AOD}\)
\(\Delta AOD\)và \(\Delta COB\)có:
\(\widehat{COB}=\widehat{AOD}\)(c.m.t)
OA = OC (theo gt)
OB = OD (theo gt)
Do đó: \(\Delta AOD\)=\(\Delta COB\)(c.g.c)
\(\Delta FBE\) có: \(\widehat{EFB}+\widehat{FEB}+\widehat{FBE}=180^o\)(theo định lí tổng ba góc của một tam giác)
\(\Delta OED\) có: \(\widehat{O_3}+\widehat{ODE}+\widehat{OED}=180^o\)(theo định lí tổng ba góc của một tam giác)
Mà \(\widehat{FBE}=\widehat{ODE}\) (do \(\Delta COB\)= \(\Delta AOD\))
\(\widehat{FEB}=\widehat{OED}\)(2 góc đối đỉnh)
Suy ra: \(\widehat{EFB}=\widehat{O_3}\)
Mà \(\widehat{O_3}=90^o\)(do \(Oy\perp Ot\))
Do đó: \(\widehat{EFB}=90^o\)nên \(BF\perp FA\)
mik nha, mik mất công làm lắm đó! ^_^
Cho tam giác ABC có AB bằng ac giả thiết suy ra tam giác ABC là tam giác cân tại A Suy ra góc B bằng góc C định nghĩa tam giác cân.mình thấy đề bài hơi ngố hơi điêu điêu mà bạn học tam giác cân chưa Nhớ lại cho mình nhé
Vì cấu trúc thi không có nên thầy mình không có dạy, nếu bạn biết thì chỉ giùm mình, bài này thầy mình treo tới 3 cái 10 lận ^^
a: Vì góc xAT=góc xOy
mà hai góc đồng vị
nên Oy//AT
b: Vì Oy//AT
và Oy vuông góc với AH
nên AT vuông góc với AH
c: góc OAH=90-70=20 độ