Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử ngược lại \(2^n-1\) là 1 số chính phương lẻ
Khi đó \(2^n-1=\left(2k+1\right)^2\) \(\left(k\inℕ^∗\right)\)
\(\Leftrightarrow2^n-1=4k^2+4k+1\)
\(\Leftrightarrow2^n=4k^2+4k+2\)
Nhận thấy VP chia hết cho 2 nhưng không chia hết cho 4
Mà n>1 nên 2n chia hết cho 4
=> vô lý => điều g/s sai
=> 2n - 1 không là 1 SCP
ta có : (10^50)^3<10^150+5*10^50+1<10^150+3*(10^50)^2+3*10^50+1= (10^50+1)^3
vay10^150+5*10^50+1 khong la lap phuong cua 2 so tu nhien
Tham khảo .
Ta có :
\(\left(10^{53}\right)^3< 10^{150}+5.10^{50}+1< 10^{150}+3.\left(10^{50}\right)^2+1\)
\(=\left(10^{50}+1\right)^3\)
Vậy \(10^{150}+5.10^{50}+1\)không là lập phương của 1 số tự nhiên
đpcm
\(n^6-n^4+2n^3+2n^2\)
\(=\left(n^6-n^4\right)+\left(2n^3+2n^2\right)=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)
\(=n^4\left(n-1\right)\left(n+1\right)+2n^2\left(n+1\right)\)
\(=\left(n^5-n^4\right)\left(n+1\right)+2n^2\left(n+1\right)\)
\(=\left(n^5-n^4+2n^2\right)\left(n+1\right)\)
\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)\)
\(=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)
\(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n-1\right)\left(n+1\right)\right]\)
\(=n^2\left(n+1\right)\left(n+1\right)\left(n^2-n+1-n+1\right)\)
\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Với mọi \(n\inℕ\)và \(n\ge1\), ta có:
\(n^2\left(n+1\right)^2=\left[n\left(n+1\right)\right]^2\)luôn là số chính phương.
Mà \(n^2-2n+2=\left(n-1\right)^2+1\)luôn không là số chính phương ( vì n>1; \(n\inℕ\))
Do đó \(n^2\left(n+1\right)^2\left(n^2-2n+1\right)\)không phải là số chính phương với mọi \(n>1,n\inℕ\)
\(\Rightarrow n^6-n^4+2n^3+2n^2\)không phải là số chính phương với mọi \(n>1,n\inℕ\)
Vậy nếu \(n\inℕ,n>1\)thì số có dạng \(n^6-n^4+2n^3+2n^2\)không phải là số chính phương
TÍNH CHẤT : Nếu tích của các số là một số chính phương thì mỗi số đều là một số chính phương.