Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\lim\limits_{x\rightarrow1^+}\frac{\sqrt{x-1}+\sqrt{x}-1}{\sqrt{\left(x-1\right)\left(x+1\right)}}=\lim\limits_{x\rightarrow1^+}\left(\frac{1}{\sqrt{x+1}}+\frac{x-1}{\left(\sqrt{x}+1\right)\sqrt{\left(x-1\right)\left(x+1\right)}}\right)\)
\(=\lim\limits_{x\rightarrow1^+}\left(\frac{1}{\sqrt{x+1}}+\frac{\sqrt{x-1}}{\left(\sqrt{x}+1\right)\sqrt{x+1}}\right)=\frac{1}{\sqrt{2}}+0=\frac{1}{\sqrt{2}}\)
\(b=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^{n-1}+x^{n-2}+...+x+1\right)}{\left(x-1\right)\left(x^{m-1}+x^{m-2}+...+x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x^{n-1}+x^{n-2}+...+1}{x^{m-1}+x^{m-2}+...+1}=\frac{n}{m}\)
\(c=\lim\limits_{x\rightarrow1}\frac{x-1+x^2-1+...+x^n-1}{x-1}=\lim\limits_{x\rightarrow1}\frac{x-1}{x-1}+\lim\limits_{\rightarrow1}\frac{x^2-1}{x-1}+...+\lim\limits_{x\rightarrow1}\frac{x^n-1}{x-1}\)
Áp dụng kết quả câu b ta được:
\(c=\frac{1}{1}+\frac{2}{1}+...+\frac{n}{1}=1+2+..+n=\frac{n\left(n+1\right)}{2}\)
\(L=\lim\limits_{x\rightarrow+\infty}\left(\frac{x}{1+x}\right)^x\)
Ta có : \(L=\lim\limits_{x\rightarrow+\infty}\left(\frac{x}{1+x}\right)^x=\lim\limits_{x\rightarrow+\infty}\left(1-\frac{1}{1+x}\right)^x\)
Đặt \(-\frac{1}{1+x}=\frac{1}{t}\Rightarrow\begin{cases}x=-\left(1+t\right)\\x\rightarrow+\infty;t\rightarrow-\infty\end{cases}\)
\(\Rightarrow L=\lim\limits_{t\rightarrow-\infty}\left(1+\frac{1}{t}\right)^{-\left(1+t\right)}=\lim\limits_{t\rightarrow-\infty}\frac{1}{\left(1+\frac{1}{t}\right)^{1+t}}=\lim\limits_{t\rightarrow-\infty}\frac{1}{\left(1+\frac{1}{t}\right)\left(1+\frac{1}{t}\right)^t}=\frac{1}{1.e}=\frac{1}{e}\)
a) = = -4.
b) = = (2-x) = 4.
c) =
= = = .
d) = = -2.
e) = 0 vì (x2 + 1) = x2( 1 + ) = +∞.
f) = = -∞, vì > 0 với ∀x>0.
Bài 1:
\(a=\lim\limits_{x\rightarrow+\infty}\frac{\frac{1}{x}+\frac{2}{\sqrt{x}}-1}{1+\frac{3}{x}}=-1\)
\(b=\lim\limits_{x\rightarrow+\infty}\frac{1+\frac{3}{x^2}-\frac{1}{x^3}}{\frac{1}{\sqrt{x}}+\frac{1}{x^2}}=\frac{1}{0}=+\infty\)
\(c=\lim\limits_{x\rightarrow-\infty}\frac{1-2\sqrt{\frac{1}{x^2}-\frac{1}{x}}}{\frac{1}{x}-1}=\frac{1}{-1}=-1\)
Bài 2:
\(a=\lim\limits_{x\rightarrow0}\frac{1-cosx}{1-cos3x}=\lim\limits_{x\rightarrow0}\frac{sinx}{3sin3x}=\lim\limits_{x\rightarrow0}\frac{\frac{sinx}{x}}{9.\frac{sin3x}{3x}}=\frac{1}{9}\)
\(b=\lim\limits_{x\rightarrow0}\frac{cotx-sinx}{x^3}=\frac{\infty}{0}=+\infty\)
\(c=\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}\)
Mà \(\left|sinx\right|\le1\Rightarrow\left|\frac{sinx}{2x}\right|\le\frac{1}{\left|2x\right|}\)
Mà \(\lim\limits_{x\rightarrow\infty}\frac{1}{2\left|x\right|}=0\Rightarrow\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}=0\)
\(L=\lim\limits_{x\rightarrow+\infty}\left(\frac{x+1}{x-2}\right)^{2x-1}=\lim\limits_{x\rightarrow+\infty}\left(1+\frac{3}{x-2}\right)^{2x-1}\)
Đặt \(\begin{cases}\frac{3}{x-2}=\frac{1}{t}\Rightarrow x=3t+2\\x\rightarrow+\infty;t\rightarrow+\infty\end{cases}\)
\(L=\lim\limits_{x\rightarrow+\infty}\left(1+\frac{1}{t}\right)^{6t+3}=\lim\limits_{x\rightarrow+\infty}\left\{\left[\left(1+\frac{1}{t}\right)^t\right]^6.\left(1+\frac{1}{t}\right)^3\right\}=e^6.1^3=e^6\)