\(\left\{{}\begin{matrix}a\ne0\\b^2-4ac< 2b-1\end{matrix}\right.\). Chứng minh hệ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\) 2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2 3. bất phương trình nào sau đây tương đương với...
Đọc tiếp

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số

A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\)

2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số

A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2

3. bất phương trình nào sau đây tương đương với bất phương trình x+5>0

A. (x-1)2 (x+5) > 0 B. x2 (x+5) >0

C. \(\sqrt{x+5}\left(x+5\right)\)> 0 D. \(\sqrt{x+5}\left(x-5\right)\)>0

4. bất phương trình ax+b > 0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a\ne0\\b=0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

5.bất phương trình ax+b>0 có tập nghiệm R khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

6.bất phương trình ax+b \(\le\)0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

7.tập nghiệm S của bất phương trình \(5x-1\ge\frac{2x}{5}+3\)

A. R B. (-∞; 2) C. (-\(\frac{5}{2}\); +∞) D. \([\frac{20}{23}\); +∞\()\)

MONG MỌI NGƯỜI GIẢI CHI TIẾT GIÚP EM Ạ TvT

0
1.) liệt kê các tập hợp sau : a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N|}2\le x\le10\left\{\right\}\) b.) B =\(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in Z|9\le x^2\le36\left\{\right\}}\) c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N}^{\cdot}|3\le n^2\le30\left\{\right\}\) B.) B là tập hợp các số thực x thỏa x2 - 4x +2 = 0 d.) D = \(\left\{{}\begin{matrix}\\\end{matrix}\right.\frac{1}{n+1}}|n\in N;n\le4\left\{\right\}\) e.) E =...
Đọc tiếp

1.) liệt kê các tập hợp sau :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N|}2\le x\le10\left\{\right\}\)

b.) B =\(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in Z|9\le x^2\le36\left\{\right\}}\)

c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N}^{\cdot}|3\le n^2\le30\left\{\right\}\)

B.) B là tập hợp các số thực x thỏa x2 - 4x +2 = 0

d.) D = \(\left\{{}\begin{matrix}\\\end{matrix}\right.\frac{1}{n+1}}|n\in N;n\le4\left\{\right\}\)

e.) E = \(\left\{{}\begin{matrix}\\\end{matrix}\right.2n^2-1|n\in N^{\cdot}},n\le7\left\{\right\}\)

2.) chỉ ra tính chất đặc trưng :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;1;2;3;4\left\{\right\}}\)

b.) B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;8;12;16\left\{\right\}}\)

c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;9;16;25;36\left\{\right\}}\)

3.) Trong các tập hợp sau , tập hợp nào là con tập nào :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.1;2;3\left\{\right\}}\)

B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N^{\cdot}|n\le4\left\{\right\}}\)

b.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N^{\cdot}}|n\le5\left\{\right\}\)

B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in Z|0\le|n|\le5\left\{\right\}}\)

0

a: \(x\in\left(-1;2\right)\)

b: \(x\in[8;10)\cup\left[25;30\right]\)

c: \(x\in\left(-\infty;-5\right)\cup[7;+\infty)\)

14 tháng 11 2017

Đặt S=x+y;P=xy giải ra :V

5 tháng 5 2017

a) Xét \(a=0\) . Thay vào hệ phương trình ta có:
\(\left\{{}\begin{matrix}3x=5\\2x+y=b\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=b-2x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=b-\dfrac{10}{3}\end{matrix}\right.\).
Vậy khi \(a=0\) và mỗi giá trị \(b\in R\) hệ có duy nhất nghiệm: \(\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=b-\dfrac{10}{3}\end{matrix}\right.\).
Vậy \(a\ne0\). Khi đó hệ có vô số nghiệm khi và chỉ khi:
\(\dfrac{2}{3}=\dfrac{1}{a}=\dfrac{b}{5}\).
\(\dfrac{2}{3}=\dfrac{1}{a}\)\(\Leftrightarrow a=\dfrac{3}{2}\); \(\dfrac{2}{3}=\dfrac{b}{5}\)\(\Leftrightarrow b=\dfrac{10}{3}\).
Vậy \(\left(a;b\right)=\left(\dfrac{3}{2};\dfrac{10}{3}\right)\) thì hệ có vô số nghiệm.

5 tháng 5 2017

b) Xét a = 0. Thay vào hệ phương trình ta có:
\(\left\{{}\begin{matrix}2y=0\\3x-4y=b+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{b+1+4y}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{b+1}{3}\end{matrix}\right.\).
Vậy khi a = 0 và với mỗi \(b\in R\) hệ phương trình có nghiệm duy nhất là: \(\left\{{}\begin{matrix}y=0\\x=\dfrac{b+1}{3}\end{matrix}\right.\).
Vậy \(a\ne0\). Khi đó hệ có vô số nghiệm khi:\(\dfrac{3}{a}=\dfrac{-4}{2}=\dfrac{b+1}{a}\).
\(\dfrac{3}{a}=\dfrac{-4}{2}\)\(\Rightarrow a=\dfrac{-3}{2}\); \(\dfrac{-4}{2}=\dfrac{b+1}{a}\)\(\Rightarrow b=-2a-1\)\(\Leftrightarrow b=2\).
Vậy \(\left(a;b\right)=\left(\dfrac{-3}{2};2\right)\) hệ có vô số nghiệm.

22 tháng 7 2018

sử dụng phương pháp thế nha bn , rút 1 ẩn từ phương trình đơn giản rồi thế vào phương trình còn lại rồi giải bình thường . tập làm đi cho quen nha bn :)

22 tháng 7 2018

được rồi bạn ơi :v dò lên hỏi kết quả đúng sai thôi

31 tháng 7 2018

a) \(x\in S=(-\infty;-5]\cup[7;+\infty)\)

b) \(x\in S=\left(-1;2\right)\cup(5;10]\)

a: Đặt |x-6|=a, |y+1|=b

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

=>|x-6|=1 và |y+1|=1

\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)

b: Đặt |x+y|=a, |x-y|=b

Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)

=>HPTVN

c: Đặt |x+y|=a, |x-y|=b

Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)

=>|x+y|=2 và x=y

=>|2x|=2 và x=y

=>x=y=1 hoặc x=y=-1