\(\frac{a}{b}=\frac{c}{d}\)

Chứng minh:\(\frac{a+2c}{a-2c}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)

\(\Rightarrow\frac{a+2c}{a-2c}=\frac{b+2d}{b-2d}\)

4 tháng 9 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)\(\frac{a}{b}=\frac{2c}{2d}=\frac{a-2c}{b-2d}\)

\(\Rightarrow\frac{a+c}{b+d}=\frac{a-2c}{b-2d}\left(=\frac{a}{b}\right)\)

14 tháng 6 2017

Áp dụng tính chất của tỉ lệ thức, ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{1}{2}.\frac{a}{c}=\frac{1}{2}.\frac{b}{d}\)

\(\Rightarrow\frac{a}{2c}=\frac{b}{2d}\)(ĐPCM)
 

14 tháng 6 2017
avt1084367_60by60.jpg
  • Edogawa Conan 
  • thật là chuận cho bn ấy ik 
2 tháng 9 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

\(\frac{a+2c}{b+2d}=\frac{kb+2kd}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)(1)

\(\frac{a-2c}{b-2d}=\frac{kb-2kd}{b-2d}=\frac{k\left(b-2d\right)}{b-2d}=k\)(2)

Từ (1) và (2) => đpcm 

2 tháng 9 2020

                       Bài làm :

\(\text{Đặt : }\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)    

 Ta có :

\(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\left(1\right)\)

\(\frac{a-2c}{b-2d}=\frac{bk-2dk}{b-2d}=\frac{k\left(b-2d\right)}{b-2d}=k\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)

=> Điều phải chứng minh

10 tháng 8 2020

Ta có :\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)

=> (2a + b)(c - 2d) = (a - 2b)(2c + d)

=> 2ac - 4ad + bc - 2bd = 2ac + ad - 4bc  - 2bd

=> -4ad + bc = ad - 4bc

=> -4ad - ad = -4bc - bc

=> -5ad = - 5bc

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\)(đpcm)

10 tháng 8 2020

Theo bài ra ta có : 

\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Leftrightarrow\left(2a+b\right)\left(c-2d\right)=\left(2c+d\right)\left(a-2b\right)\)

\(\Leftrightarrow2ac-4ad+bc-2db=2ca-4bc+da-2bd\)

\(\Leftrightarrow-5ad+5bc=0\Leftrightarrow-5ab=-5bc\)

\(\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

31 tháng 10 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta có





Do đó 

Nên Áp dụng tính chất của dãy tỉ số bằng nhau ta có





Do đó 

Nên Áp dụng tính chất của dãy tỉ số bằng nhau ta có






Do đó 

Nên Áp dụng tính chất của dãy tỉ số bằng nhau ta có





Do đó 

Nên 

31 tháng 10 2019

Đặt  \(\frac{a}{b}=\frac{c}{d}=k\) 

\(\Rightarrow a=bk;c=dk\)

Ta có: +) (a+2c) (b+d)= (bk+2.dk) (b+d)

                                   = k.(b+2d) (b+d)    (1)

+) (a+c) (b+2d)= (bk+dk) (b+2d)

                        = k.(b+d) (b+2d)                (2)

Từ (1) và (2), ta có: (a+2c) (b+d)= (a+c) (b+2d)

Học tốt nha^^

26 tháng 9 2016

\(\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\Leftrightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\)\(\begin{cases}a=bk\\c=dk\end{cases}\)

Xét VT \(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\left(1\right)\)

Xét VP \(\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ (1) và (2) ->Đpcm

22 tháng 9 2019

a)

i) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}.\)

\(\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\)

\(\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}\)

\(\Rightarrow\frac{b+a}{a}=\frac{d+c}{c}.\)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\left(đpcm\right).\)

Chúc bạn học tốt!


22 tháng 9 2019

còn ii và phần b nữa