Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
=>\(\frac{a}{c}.\frac{b}{d}=\frac{a}{c}.\frac{a}{c}=\frac{b}{d}.\frac{b}{d}\)
=>\(\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(tính chất dãy tỉ số bằng nhau)
=>\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
=>ĐPCM
Vì \(\frac{a}{b}=\frac{c}{d}\) nên ad=bc và \(\frac{a}{c}=\frac{b}{d}=\frac{ab}{cd}\)(1)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(2)
Từ (1) và (2), ta suy ra: \(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)và \(\frac{a^2+b^2}{c^2+d^2}=\left(\frac{a+b}{c+d}\right)^2\)
a) Do \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)
Từ (1) và (2) => \(\frac{a.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)
b) Do \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\begin{cases}\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\\\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\end{cases}\)\(\Rightarrow\begin{cases}\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\\\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\end{cases}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)
a, Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)
Thay:
\(\frac{ab}{cd}=\frac{b^2}{d^2}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)
=> đpcm
Ta có:
\(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}=\frac{a^2+b^2+a.b}{c^2+d^2+c.d}=\frac{a^2+a.b+b^2+a.b}{c^2+c.d+d^2+c.d}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}=\frac{a\left(a+b\right)+b\left(a+b\right)}{c\left(c+d\right)+d\left(c+d\right)}=\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\)
\(\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}=\frac{a.b}{c.d}\Rightarrow\frac{c\left(a+b\right)}{a\left(c+d\right)}=\frac{b\left(c+d\right)}{d\left(a+b\right)}\)
\(\Rightarrow\frac{ca+cb}{ca+ad}=\frac{bc+bd}{ad+bd}=\frac{ca+bd}{ca-bd}=1\)
\(\Rightarrow ca+cb=ca+ad\)
\(\Rightarrow cb=ad\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\), suy ra \(a=bk;c=dk\)
\(VT=\frac{2b^2k^2-3b^2k+3b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+3\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(1\right)\)
\(VP=\frac{2d^2k^2-3d^2k+3d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+3\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(2\right)\)
Từ (1) và (2) suy ra ĐPcm