Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
\(\Rightarrow2\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=0\)
\(\Rightarrow\frac{ab+bc+ca}{abc}=0\)
\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}=0\)
\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab\left(\frac{1}{a}+\frac{1}{b}\right)}=-\frac{1}{c^3}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab\left(-\frac{1}{c}\right)}=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\) (ĐPCM)
) gt: a/(b+c) + b/(c+a) + c/(a+b) = 1
A = a²/(b+c) + b²/(c+a) + c²/(a+b) = a[a/(b+c)] + b[b/(c+a)] + c[c/(a+b)]
= a[a/(b+c) + 1 - 1] + b[b/(c+a) + 1 - 1] + c[c/(a+b) + 1 - 1]
= a.(a+b+c)/(b+c) -a + b.(a+b+c)/(c+a) - b + c.(a+b+c)/(a+b) - c
= (a+b+c)[a/(b+c) + b/(c+a) + c/(a+b)] - (a+b+c)
= (a+b+c) - (a+b+c) = 0
Ta có : \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\Rightarrow\frac{\left(a+b+c\right)a}{b+c}+\frac{\left(a+b+c\right)b}{c+a}+\frac{\left(a+b+c\right)c}{a+b}=a+b+c\)
\(\Rightarrow\frac{a^2+ab+ac}{b+c}+\frac{ab+b^2+bc}{c+a}+\frac{ac+bc+c^2}{a+b}=a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{ab+ac}{b+c}+\frac{b^2}{a+c}+\frac{ab+bc}{c+a}+\frac{c^2}{a+b}+\frac{ac+bc}{a+b}=a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+a+b+c-a-b-c=0\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\left(đpcm\right)\)
Ta có : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\) (1)
Ta có : a+b+c khác 0
do nếu a+b+c=0=>\(\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=1\)=>-3=1(Vô lí)
do a+b+c khác 0 nên ta nhân (a+b+c) vào (1)
=>\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)
=>\(\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(c+a\right)}{c+a}+\frac{c\left(a+b\right)+c^2}{a+b}=a+b+c\)
=>\(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)
=>\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)(ĐPCM)
\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\frac{ab}{c+a}+\frac{ac}{a+b}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{ac}{b+c}+\frac{bc}{c+a}=a+b+c\)
\(\Leftrightarrow\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\frac{ab+bc}{c+a}+\frac{ac+bc}{a+b}+\frac{ab+ac}{b+c}=a+b+c\)
\(\Leftrightarrow\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+a+b+c=a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
A = \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
= \(a.\frac{a}{b+c}+b.\frac{b}{a+c}+c.\frac{c}{a+b}\)
=\(a.\frac{a}{b+c}+1-1+b.\frac{b}{a+c}+1-1+c.\frac{c}{a+b}+1-1\)
= \(\frac{a\left(a+b+c\right)}{b+c}-a+\frac{b\left(a+b+c\right)}{a+b}-b+\frac{c\left(a+b+c\right)}{a+b}-c\)
= \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\)
= (a+b+c) - (a+b+c) = 0
câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)
vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1
suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)
Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)
Ta có: \(\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\left(a+b+c\right)=1.\left(a+b+c\right)\)
=>\(\frac{a^2}{b+c}+\frac{a\left(b+c\right)}{b+c}+\frac{b^2}{a+c}+\frac{b\left(a+c\right)}{a+c}+\frac{c^2}{a+b}+\frac{c\left(a+b\right)}{a+b}=a+b+c\)
=> \(\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c=a+b+c\)
=> \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)