Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow \frac{ab+bc+ac}{abc}=0\Rightarrow ab+bc+ac=0\)
\(\Rightarrow ab+bc=-ac\)
Khi đó:
\(D=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{(ab)^3+(bc)^3+(ca)^3}{a^2b^2c^2}=\frac{(ab+bc)^3-3ab.bc(ab+bc)+(ac)^3}{a^2b^2c^2}\)
\(=\frac{(-ac)^3-3ab.bc(-ac)+(ac)^3}{a^2b^2c^2}=\frac{3a^2b^2c^2}{a^2b^2c^2}=3\)
Bài 2:
\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow a+b+c=ab+bc+ac=0\)
\(\Rightarrow a^2+b^2+c^2=\frac{(a+b+c)^2-2(ab+bc+ac)}{2}=0\)
\(\Rightarrow a=b=c=0\)
Vô lý do theo đề bài $a,b,c\neq 0$
Bạn xem lại đề.
Ta CM BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},a+b\ge2\sqrt{ab}\)( co si với a,b>0)
Suy ra \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\RightarrowĐPCM\)\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)
a/Áp dụng (1) có
\(\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\left(2\right)\).Tương tự ta cũng có:
\(\frac{1}{b+c+2a}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\left(3\right),\frac{1}{c+a+2b}\le\frac{1}{4}\left(\frac{1}{b+c}+\frac{1}{a+b}\right)\left(4\right)\)
Cộng (2),(3) và (4) có \(VT\le\frac{1}{4}.\left(6+6\right)=3\left(ĐPCM\right)\)
b/Áp dụng (1) có:
\(\frac{1}{3a+3b+2c}=\frac{1}{\left(a+b+2c\right)+2\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{2\left(a+b\right)}\right)\left(5\right)\)
Tương tự có: \(\frac{1}{3a+2b+3c}\le\frac{1}{4}\left(\frac{1}{a+c+2b}+\frac{1}{2\left(a+c\right)}\right)\left(6\right)\)
\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{2a+b+c}+\frac{1}{2\left(b+c\right)}\right)\left(7\right)\)
Cộng (5),(6) và (7) có:
\(VT\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{a+c+2b}+\frac{1}{2a+b+c}+\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\right)\le\frac{1}{4}.9=\frac{3}{2}\)
\(\frac{1}{3a}+\frac{1}{2b}+\frac{1}{c}=\frac{1}{3a+2b+c}\)
\(\Leftrightarrow\frac{1}{3a}+\frac{1}{2b}=\frac{1}{3a+2b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{3a}+\frac{1}{2b}=\frac{c-\left(3a+2b+c\right)}{\left(3a+2b+c\right)c}\)
\(\Leftrightarrow\frac{3a+2b}{6ab}=\frac{-\left(3a+2b\right)}{3ac+2bc+c^2}\)
\(\Leftrightarrow\left(3a+2b\right)\left(3ac+2bc+c^2\right)+\left(3a+2b\right)6ab=0\)
\(\Leftrightarrow\left(3a+2b\right)\left(3ac+2bc+c^2+6ab\right)=0\)
\(\Rightarrow\left(3a+2b\right)\left(2b+c\right)\left(c+3a\right)=0\) (đpcm)
1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)
\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)
với x+y+z=0 thì \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0< =>\)x3 +y3 +z3 =3xyz
nếu đặt x=a2; y=b2 ;z=c2 thì ta cần có a2 +b2 +c2 =0 thì sẽ có a6 +b6 +c6 =3a2b2c2
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0< =>\frac{ab+bc+ca}{abc}=0< =>ab+bc+ca=0.\)
a+b+c=0 <=> (a+b+c)2 =0 <=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0< =>a^2+b^2+c^2=0.\)(chứng minh xong)
Ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right).\left(x,y>0\right)\) lien tiep la duoc
Chuc bn thanh cong
svác-xơ ngược dấu.
\(\frac{16}{2a+3b+3c}=\frac{16}{\left(a+b\right)+\left(c+b\right)+\left(b+c\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{2}{c+b}+\frac{1}{c+a}\)
Tương tự
\(\frac{16}{2b+3c+3a}\le\frac{1}{a+b}+\frac{1}{b+c}+\frac{2}{c+a}\)
\(\frac{16}{2c+3a+3b}\le\frac{2}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)
Cộng lại ta được:
\(16VT\le4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(đpcm\right)\)
\(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}=\frac{2}{a+2b+2c}\)
\(\Leftrightarrow\frac{2b+a}{ab}=\frac{2c-\left(a+2b+2c\right)}{c\left(a+2b+2c\right)}\)
\(\Leftrightarrow\frac{a+2b}{ab}=\frac{-\left(2b+a\right)}{ac+2ab+2c^2}\)
\(\Leftrightarrow\left(a+2b\right)\left(ac+2bc+2c^2\right)+\left(2b+a\right)ab=0\)
\(\Leftrightarrow\left(a+2b\right)\left(ac+2bc+2c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+2b\right)\left[a\left(b+c\right)+2c\left(b+c\right)\right]=0\)
\(\Rightarrow\left(a+2b\right)\left(b+c\right)\left(2c+a\right)=0\) (đpcm)
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Leftrightarrow ab+bc+ca=0\)
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=0\)
Áp dụng :
\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)
\(\Rightarrow a^6+b^6+c^6\)
\(=\left(a^2+b^2+c^2\right)\left(a^4+b^4+c^2-a^2b^{^2}-b^2c^2-c^2a^2\right)+3a^2b^2c^2\)
\(\Leftrightarrow a^6+b^6+c^6=3a^2b^2c^2\)