\(f\left(x\right)=x^2-\left(2m+1\right)x+m^2+1\) (x à biến số, m là tha...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

Để \(f\left(x\right)=\left(ax+b\right)^2\)

\(\Leftrightarrow x^2-\left(2m+1\right)x+m^2+1=\left(ax+b\right)^2\)

\(\Leftrightarrow x^2-\left(2m+1\right)x+\left(m^2+1\right)=a^2x^2+2abx+b^2\)

Đồng nhất hệ số ta được :

\(\left\{{}\begin{matrix}a^2=1\\2ab=-\left(2m+1\right)\\b^2=m^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\pm1\\2ab=-2m-1\\b^2=m^2+1\end{matrix}\right.\)

Với \(a=1\Rightarrow\left\{{}\begin{matrix}2b=-2m-1\\b^2=m^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{4}\\b=-\dfrac{5}{4}\end{matrix}\right.\)

Với \(a=-1\Rightarrow\left\{{}\begin{matrix}-2b=-2m-1\\b^2=m^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{4}\\b=\dfrac{5}{4}\end{matrix}\right.\)

Vậy \(m=\dfrac{3}{4}\)

11 tháng 2 2019

Bài 1:

a) Ta có \(f\left(a\right)=a^2\),\(\forall a\)

\(f\left(-a\right)=a^2\) \(\forall a\)

\(\Rightarrow f\left(a\right)=f\left(-a\right)\forall a\)

b)

\(f\left(a-1\right)=4\)

\(\Rightarrow\left(a-1\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}a-1=2\\a-1=-2\end{matrix}\right.\)

TH1:

a-1 = 2

=> a = 3

ThH2:

a-1 = -2

=> a = -1

Bài 2:

a) Hàm số đồng biến khi :

\(m+2>0\)

\(\Rightarrow m>-2\)

b) Hàm số có GTLN là 0

=> \(\left(m+2\right)x^2\le0\)

Lại có \(x^2\ge0\)

=> m +2 \(\le0\)

=> m \(\le-2\)

c) Hàm số có GTNN là 0

=> \(\left(m+2\right)x^2\ge0\)

\(x^2\ge0\)

=> m+2 \(\ge0\)

=> \(m\ge-2\)

2 tháng 6 2020

Dòng cuối chuyển vế sai kìa bạn ( lần tương đương 2 và 3 đều chuyển vế sai)

2 tháng 6 2020

mk bất cẩn quá ấy mà. Bạn phát hiện ra sửa lại là đc r

1 tháng 10 2019

Ta co:\(\Sigma\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}=\Sigma\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)Ta lai co:

\(\Sigma x+\Sigma\frac{1}{x}=\Sigma\left(x+\frac{1}{4x}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3+\frac{3}{4}.\frac{9}{x+y+z}\ge3+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)

Dau '=' xay ra khi \(x=y=z=\frac{1}{2}\)

Vay \(P_{min}=\frac{15}{2}\)khi \(x=y=z=\frac{1}{2}\)

1 tháng 10 2019

mấy câu trên bn giải đc k ak ? Giải giúp mik vs :3

17 tháng 10 2019

@Nguyễn Việt Lâm

17 tháng 10 2019

@Akai Haruma

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số) 1, Giair hpt với a = 1 2, Gỉai hpt với a = \(\sqrt{3}\) 3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0 Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số) 1, Giair và biện luận hpt 2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định Bài 5: Cho hpt...
Đọc tiếp

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số)
1, Giair hpt với a = 1
2, Gỉai hpt với a = \(\sqrt{3}\)
3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0
Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số)
1, Giair và biện luận hpt
2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định
Bài 5: Cho hpt \(\left\{{}\begin{matrix}mx-ny=5\\2x+y=n\end{matrix}\right.\) (m,n là các tham số)
2, Tìm m và n để hệ đã cho có nghiệm x = \(-\sqrt{3}\), y = \(\sqrt{4+2\sqrt{3}}\)
Bài 6: Cho hpt \(\left\{{}\begin{matrix}x+y=3m-2\\2x-y=5\end{matrix}\right.\) (m là tham số)
Tìm m để hpt có nghiệm (x;y) sao cho \(\dfrac{x^2-y-5}{y+1}=4\)
Bài 7: Cho hpt \(\left\{{}\begin{matrix}2x+3y=m+1\\x+2y=2m-8\end{matrix}\right.\) (m là tham số)
2, Tìm m để hệ có nghiệm (x;y) thỏa mãn x=3y
3, Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x.y>0
Bài 9: Cho hpt \(\left\{{}\begin{matrix}2y-x=m+1\\2x-y=m-2\end{matrix}\right.\) (I) (m là tham số)
2, Tính giá trị của m để hpt (I) có nghiệm (x;y) sao cho biểu thức P = \(x^2+y^2\) đạt GTNN
Bài 10: Cho hpt \(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\)
Tìm a nguyên để hệ có nghiệm duy nhất (x;y) với x,y nguyên

1
29 tháng 1 2018

Câu nào biết thì mink làm, thông cảm !

Bài 1:

1) Cho \(a=1\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)

2) Cho \(a=\sqrt{3}\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)

Bữa sau làm tiếp


Bài 1: Cho đa thức bậc 4 thỏa mãn: P(-1) = 0 và P(x) – P(x – 1) = x(x+1)(2x+1) a) Xác định P(x) b) Suy ra giá trị của tổng: S = 1.2.3 + 2.3.5 +…+ n(n+1)(2n+1) Bài 2: Xác định a và b sao cho đa thức \(P\left(x\right)=ax^4+bx^3+1\) chia hết cho đa thức Q(x) = (x -1)2 . Với a, b vừa tìm được, xác định các nghiệm của P(x). Bài 3: Xác định phần dư R(x) của phép chia: ...
Đọc tiếp

Bài 1: Cho đa thức bậc 4 thỏa mãn: P(-1) = 0 và P(x) – P(x – 1) = x(x+1)(2x+1)
a) Xác định P(x)
b) Suy ra giá trị của tổng: S = 1.2.3 + 2.3.5 +…+ n(n+1)(2n+1)

Bài 2: Xác định a và b sao cho đa thức \(P\left(x\right)=ax^4+bx^3+1\) chia hết cho đa thức Q(x) = (x -1)2 . Với a, b vừa tìm được, xác định các nghiệm của P(x).

Bài 3: Xác định phần dư R(x) của phép chia: \(P\left(x\right)=1+x+x^9+x^{25}+x^{49}+x^{81}\) cho \(x^3-x\). Tính R(701,4)

Bài 4: Cho f(1) =1; f (m+n) = f(m) +f(n) +mn ( với m,n nguyên dương)
a) CM: f(k) – f(k-1) =k
b) Tính f(10); f(2007); f(2008)

Bài 5: Cho a+b+c=0 và ab + bc + ac =0. Tính giá trị biểu thức: \(M=\left(a-2005\right)^{2006}-\left(b-2005\right)^{2006}-\left(c+2005\right)^{2006}\)

Bài 6: Cho \(a>b>0\) thỏa mãn \(3a^2+3b^2=10ab\). Tính giá trị biểu thức: \(P=\dfrac{a-b}{a+b}\)

Mình biết lần này thực sự mình hỏi nhiều nhưng vẫn mong các bạn giúp đỡ, mình sẽ tick cho bạn nào trả lời được trước 16/8/2017 nhé, 1 bài thôi cũng tick, cảm ơn các bạn nhiều, giúp mình nhé !!! vui

5
15 tháng 8 2017

\(P^2=\dfrac{\left(a-b\right)^2}{\left(a+b\right)^2}=\dfrac{a^2-2ab+b^2}{a^2+2ab+b^2}=\dfrac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\dfrac{4ab}{16ab}=\dfrac{1}{4}\Rightarrow P=\dfrac{1}{2}\)

15 tháng 8 2017

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)\(ab+bc+ac=0\Rightarrow a^2+b^2+c^2=0\Rightarrow a=b=c=0\)

Vậy \(M=-2005^{2006}\)

NV
28 tháng 11 2019

Số hạng cuối cùng mẫu số là \(\frac{1}{\sqrt{x}-1}\) hay \(\frac{1}{\sqrt{x-1}}\) bạn?

28 tháng 11 2019

do lỗi đánh nhầm ạ, phải là \(\frac{1}{\sqrt{x}-1}\)

Bài 11: 

\(\overrightarrow{AB}=\left(2;4\right)\)

\(\overrightarrow{AC}=\left(m-1;3\right)\)

Để A,B,C thẳng hàng thì \(\dfrac{m-1}{2}=\dfrac{3}{4}\)

=>m-1=3/2

hay m=5/2