Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo cách làm của bạn Thư Vy nhé :
Câu hỏi của George H. Dalton - Toán lớp 7 | Học trực tuyến
\(\frac{cy-bz}{x}=\frac{az-cx}{y}=\frac{bx-ay}{z}=\frac{xyc-bxz}{x^2}=\frac{ayz-xyc}{y^2}=\frac{xzb-ayz}{z^2}\)
\(=\frac{cxy-bxz+ayz-cxy+bxz-ayz}{x^2+y^2+z^2}=0\) ( theo t/c dãy tỉ số bằng nhau )
\(\Rightarrow\left\{{}\begin{matrix}cy=bz\\az=cx\\bx=ay\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{c}{z}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{a}{x}\end{matrix}\right.\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Ta có :
\(\dfrac{cy-bz}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}=\dfrac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)
\(\Rightarrow\dfrac{cy-bz}{x}=0\Rightarrow cy=bz\Rightarrow\dfrac{b}{y}=\dfrac{c}{z}\left(1\right)\)
\(\Rightarrow\dfrac{az-cx}{y}=0\Rightarrow az=cx\Rightarrow\dfrac{a}{x}=\dfrac{c}{z}\left(2\right)\)
Từ (1) và (2) suy ra:\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
đặt a/b = c/d bằng k
=> a=bk ; c = dk
thay vào hai biểu thức cần chứng minh là xong
thế nào bạn giúp mình với
mình ko biết cách trình bày nếu bạn làm đúng mình ticks cho bạn ngay
giúp mình đi please
10 người cùng cày trên 1 cánh đồng hết 10,5 h
a)Hỏi nếu 5 máy cùng cày trên 9 mảnh ruộng như thế hết bao nhiêu thời gian ,biết rằng năng xuất của 1 máy =15 người và cày 1 cánh đồng 3h
b)cho chu vi mảnh ruộng là 18 m , và chiều dài tỉ lệ với chiều rộng là 5:1 . hỏi giá tiền của phải trả cho người cày hết 9 mảnh ruộng đó là bao nhiêu tiền biết 1m2 phải trả 10000 đồng
Từ \(a\left(y+z\right)=b\left(z+x\right)\), áp dụng t/c dãy tỉ số bằng nhau ta được
\(\dfrac{z+x}{a}=\dfrac{y+z}{b}=\dfrac{z+x-y-z}{a-b}=\dfrac{x-y}{a-b}\)
\(\Rightarrow\dfrac{z+x}{a}.\dfrac{1}{c}=\dfrac{y+z}{b}.\dfrac{1}{c}=\dfrac{x-y}{c\left(a-b\right)}\)(1)
Tương tự : từ \(b\left(z+x\right)=c\left(x+y\right)\)
\(\Rightarrow\dfrac{z+x}{c}=\dfrac{x+y}{b}=\dfrac{z+x-x-y}{c-b}=\dfrac{y-z}{c-b}\)\(\Rightarrow\dfrac{z+x}{c}.\dfrac{1}{a}=\dfrac{x+y}{b}.\dfrac{1}{a}=\dfrac{y-z}{c-b}.\dfrac{1}{a}\)
\(\Rightarrow\dfrac{z+x}{ac}=\dfrac{x+y}{ab}=\dfrac{y-z}{a\left(c-b\right)}\)(2)
từ \(a\left(y+z\right)=c\left(x+y\right)\)
\(\Rightarrow\dfrac{y+z}{c}=\dfrac{x+y}{a}=\dfrac{y+z-x-y}{c-a}=\dfrac{z-x}{c-a}\)\(\Rightarrow\dfrac{y+z}{c}.\dfrac{1}{b}=\dfrac{x+y}{a}.\dfrac{1}{b}=\dfrac{z-x}{c-a}.\dfrac{1}{b}\)
\(\Rightarrow\dfrac{y+z}{bc}=\dfrac{x+y}{ab}=\dfrac{z-x}{b\left(c-a\right)}\)(3)
Kết hợi (1);(2)(3) => ĐPCM
tik mik nha !!!
Đặt \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\) thì \(x=ak,y=bk,z=ck\)
\(\dfrac{bz-cy}{a}=\dfrac{bck-bck}{a}=0\) __( 1 )__
\(\dfrac{cx-az}{b}=\dfrac{ack-ack}{b}=0\) __( 2 )__
\(\dfrac{ay-bx}{c}=\dfrac{abk-abk}{c}=0\) __( 3 )__
Từ ( 1 ), ( 2 ), ( 3 ) suy ra \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
Đặt \(t=\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow x=at,y=bt,z=ct\)
\(\dfrac{bz-cy}{a}=\dfrac{bct-bct}{a}=0\), tương tự ta có: \(\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}=0\)
Do đó \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
\(\dfrac{yc-bz}{x}=\dfrac{za-xc}{y}=\dfrac{xb-ya}{z}\)
\(\Rightarrow\dfrac{xyc-xbz}{x^2}=\dfrac{yza-xyc}{y^2}=\dfrac{xbz-yza}{z^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{xyc-xbz}{x^2}=\dfrac{yza-xyc}{y^2}=\dfrac{xbz-yza}{z^2}\)
\(=\dfrac{xyc-xbz+yza-xyc+xbz-yza}{x^2+y^2+z^2}=0\)
\(\Rightarrow\left\{{}\begin{matrix}yc=bz\\za=xc\\xb=ya\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y}{b}=\dfrac{z}{c}\\\dfrac{x}{a}=\dfrac{z}{c}\\\dfrac{x}{a}=\dfrac{y}{b}\end{matrix}\right.\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\left(đpcm\right)\)