\(^{\dfrac{x\sqrt{x}-1}{x+\sqrt{x}+1}+\dfrac{x-1}{\sqrt{x}-1}}\)  ( Đk x ≥ 0,x≠1)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\sqrt{x}+1=\sqrt{x}-1+\sqrt{x}+1=2\sqrt{x}\)

12 tháng 2 2023

lm sao ra đc vậy bn

 

a: \(P=\sqrt{x}\left(\dfrac{\sqrt{x}}{x^2-1}+\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{x-1}\right)-\dfrac{5x}{x^2-1}\)

\(=\sqrt{x}\left(\dfrac{\sqrt{x}}{x^2-1}+\dfrac{4\sqrt{x}}{x-1}\right)-\dfrac{5x}{x^2-1}\)

\(=\sqrt{x}\left(\dfrac{\sqrt{x}+4\sqrt{x}\left(x+1\right)}{\left(x^2-1\right)}\right)-\dfrac{5x}{x^2-1}\)

\(=\dfrac{x+4x\left(x+1\right)}{x^2-1}-\dfrac{5x}{x^2-1}\)

\(=\dfrac{x+4x^2+4x-5x}{x^2-1}\)

\(=\dfrac{4x^2}{x^2-1}\)

Khi x=4 thì \(P=\dfrac{4\cdot16}{16-1}=\dfrac{64}{15}\)

b: Để P/Q=0 thì P=0

=>x=0

22 tháng 5 2018

Mẫu thức chung là (√x+1)(√x−4)

Bạn quy đồng lên rồi tính là ra

P/s: mình hơi lười. Bạn thông cảm nhé

Bài 1: 

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)

b: \(P=\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}\cdot\dfrac{x-1}{x-2\sqrt{x}}\)

\(=\dfrac{x-3\sqrt{x}}{x-2\sqrt{x}}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)

c: Để \(P=\dfrac{1}{2}\) thì \(2\sqrt{x}-6=\sqrt{x}-2\)

hay x=16

13 tháng 12 2022

ĐKXĐ: x>0; y>0

Sửa đề: \(P=\left[\dfrac{\sqrt{x}+\sqrt{xy}}{\sqrt{xy}}\cdot\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{x+y}{xy}\right]:\dfrac{x\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{y}+\sqrt{x}\right)}{\sqrt{x^3y}+\sqrt{xy^3}}\)

\(=\dfrac{x+y+2\sqrt{xy}}{xy}\cdot\dfrac{\sqrt{xy}\left(x+y\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(x+y\right)}=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)

6 tháng 10 2018

Câu đầu tiên: \(\sqrt{18-\sqrt{128}}=\sqrt{16-2\sqrt[]{16}\sqrt{2}+2}=\sqrt{\left(\sqrt{16}-\sqrt{2}\right)^2}=\sqrt{16}-\sqrt{2}=4-\sqrt{2}\)

6 tháng 10 2018

CM\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=2\)

Biến đổi vế trái ta có:

\(VT^2=\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(\sqrt{4-\sqrt{7}}\right)}+4-\sqrt{7}=8-2\sqrt{16-7}=8-2\sqrt{9}=8-2.3=2\Rightarrow VT=\sqrt{2}\)

18 tháng 8 2018

a) điều kiện xác định : \(-1< x< 1\)

ta có : \(A=\left(\dfrac{3}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)

\(\Leftrightarrow A=\left(\dfrac{3+\sqrt{1-x^2}}{\sqrt{1+x}}\right):\left(\dfrac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}\right)\)

\(\Leftrightarrow A=\left(\dfrac{3+\sqrt{1-x^2}}{\sqrt{1+x}}\right)\left(\dfrac{\sqrt{1-x^2}}{3+\sqrt{1-x^2}}\right)=\sqrt{1-x}\)

b) điều kiện xác định : \(x>0;x\ne1\)

ta có : \(B=\left(\dfrac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}\right):\dfrac{1}{x^2-\sqrt{x}}\)

\(\Leftrightarrow B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}\right):\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) \(\Leftrightarrow B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}\right).\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)

\(\Leftrightarrow B=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)=x-1\)

18 tháng 8 2018

Phùng Khánh Linh

a: \(A=\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}-\dfrac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)

\(=-\sqrt{x}+3-\sqrt{x}+3-6=-2\sqrt{x}\)

b: \(\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\)

\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}-x-1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{1}{x+1}\)

g: \(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x-1}{\sqrt{x}+1}-2\right)\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{x-1}\cdot\left(\sqrt{x}-1-2\right)\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-1}\)

 

8 tháng 7 2017

mọi người ơi giải giúp mình một tí đang cần gấp

30 tháng 8 2017

a)

\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)

b)

\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)

c)

\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

d)

\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)