Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2.1
a: \(\dfrac{2012}{\left|x\right|+2013}\le\dfrac{2012}{2013}\)
Dấu '=' xảy ra khi x=0
b: \(\dfrac{\left|x\right|+2012}{-2013}\le-\dfrac{2012}{2013}\)
Dấu '=' xảy ra khi x=0
B=\(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}\right)\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)-2\(\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
=1-\(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{2012}+\dfrac{1}{2013}\)=S
( A-B)2013 =0
Chúc ban học tốt nhé...!
a/ \(A=\dfrac{2012}{\left|x\right|+2013}\)
vì: \(\left|x\right|\ge0\Rightarrow\left|x\right|+2013\ge2013\)
=> \(\dfrac{2012}{\left|x\right|+2013}\le\dfrac{2012}{2013}\)
Dấu ''='' xảy ra khi x = 0
Vậy MAXA = 2012/2013 khi x = 0
b/ \(B=\dfrac{\left|x\right|+2012}{-2013}\)
Vì: \(\left|x\right|\ge0\Rightarrow\left|x\right|+2012\ge2012\)
=> \(\Rightarrow\dfrac{\left|x\right|+2012}{-2013}\le-\dfrac{2012}{2013}\)
Dấu ''='' xảy ra khi x = 0
Vậy.........
Bài 2: Ăn cơm xoq lm cho
Bài 2:
a, Để C nhỏ nhất thì /x/+2012 phải nhỏ nhất
Mà /x/ luôn lớn hơn hoặc bằng 0 => /x/+2012 nhỏ nhất khi /x/ =0
=> x+0, GTNN của C=\(\dfrac{0+2012}{2013}=\dfrac{2012}{2013}\)khi x=0
*a/b=c/d=k=>a=bk;c=dk
Thay a=bk vào 2a+3b/2a-3b=2bk+3b/2bk-3b=2k+3/2k-3
Tương tự thay c=dk vào 2c+3d/2c-3d=2dk+3d/2dk-3d=2k+3/2k-3
=>2a+3b/2a-3b=2c+3d/2c-3d
*a/b=c/d=>a/c=b/d=k
=>k^2=a^2/c^2=c^2/d^2=a^2-b^2/c^2-d^2 (1)
k^2=a/c.b/d=ab/cd (2)
Từ (1) và (2)=>ab/cd=a^2-b^2/c^2-d^2
*a/b=c/d=>a/c=b/d=k=a+b/c+d
=>k^2=(a+b/c+d)^2
k^2=a^2/c^2=b^2/d^2=a^2+b^2/c^2+d^2
=>(a+b/c+d)^2=a^2+b^2/c^2+d^2
Gọi \(\dfrac{a}{b}=\dfrac{c}{d}=k\).\(\Rightarrow a=bk,c=dk\)
a)Ta có:\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)(1)
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}\dfrac{2k+3}{2k-3}\)(2)
Từ (1),(2)ta có:\(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b)Ta có:\(\dfrac{ab}{cd}=\dfrac{bk\times b}{dk\times d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)(1)
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)(2)
Từ (1),(2) ta có:\(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
c)Ta có:\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\)(1)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2}{d^2}\)(2)
Từ (1), (2) ta có \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
ta có:
\(P=\dfrac{1}{1007}+...+\dfrac{1}{2013}\\ \Rightarrow P=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1006}\right)\\ \Rightarrow P=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\\ \Rightarrow P=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\\ \Rightarrow P=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)\(\Rightarrow P=1-\dfrac{1}{2}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}=S\)
=> \(\left(P-S\right)^{2013}=0\)
vậy \(\left(P-S\right)^{2013}=0\)
a)đặt \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=k\(\Rightarrow\)a=bk, c=dk
\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (1)
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (2)
từ (1),(2)\(\Rightarrow\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b)ta có:
\(\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\)
câu c bn tự giải nhé dễ mak ahihihichúc bn hc tốt
Chứng minh:
Đặt \(\dfrac{a}{2013}=\dfrac{a}{2014}=\dfrac{a}{2015}=k\)
\(\Rightarrow a=2013k,b=2014k,c=2015k\)
Vế trái
\(4\left(2013k-2014k\right).\left(2015k-2016k\right)\)\(=4.-k.-k=4k^2\)
Vế phải
\(\left(2015k-2013k\right)^2\)\(=\left(2k\right)^2=4k^2\)
\(\Rightarrow\)4(a−b).(b−c)=(c−a)\(\Rightarrow\)đpcm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2013}=\dfrac{b}{2014}=\dfrac{c}{2015}=\dfrac{a-b}{2013-2014}=\dfrac{b-c}{2014-2015}=\dfrac{c-a}{2015-2013}\)\(\Rightarrow\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)
\(\Rightarrow\dfrac{a-b}{-1}.\dfrac{b-c}{-1}=\left(\dfrac{c-a}{2}\right)^2\)
\(\Rightarrow\dfrac{\left(a-b\right)\left(b-c\right)}{1}=\dfrac{\left(c-a\right)^2}{4}\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{c}{a}=\frac{d}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{c}{a}=\frac{d}{b}=\frac{c+d}{a+b}\)(đpcm)
a) Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{c}{a}=\frac{d}{b}=\frac{c+d}{a+b}\Rightarrow\frac{c+d}{a+b}=\frac{c}{a}\left(\text{đpcm}\right)\)
b)Ta có : \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(\text{đpcm}\right)\)
Ta có: \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1006}\right)\)
\(=\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(\Rightarrow P-S=\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2013}\right)=0\)
\(\Rightarrow\left(P-S\right)^{2013}=0^{2013}=0\)
Vậy \(\left(P-S\right)^{2013}=0\)
ta có :\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(=>\dfrac{a^{2013}}{c^{2013}}=\dfrac{b^{2013}}{d^{2013}}=\dfrac{\left(a+b\right)^{2013}}{\left(c+b\right)^{2013}}\left(1\right)\)
Mặt khác:\(\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a^{2013}}{c^{2013}}=\dfrac{b^{2013}}{d^{2013}}=\dfrac{2.a^{2013}}{2.c^{2013}}=\dfrac{3.b^{2013}}{3.d^{2013}}=\dfrac{2.a^{2013}-3.b^{2013}}{2.c^{2013}-3.d^{2013}}\left(2\right)\)Từ (1),(2)=>\(\dfrac{\left(a+b\right)^{2013}}{\left(c+d\right)^{2013}}=\dfrac{2.a^{2013}-3.b^{2013}}{2.c^{2013}-3.d^{2013}}\left(đpcm\right)\)
Cám ơn cậu nhiều nhé