\(\Delta\)ABC vuông tại A, AH\(\perp\) BC, biết AB - AC =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)

16 tháng 7 2021

25/13 nha

DD
21 tháng 7 2021

Xét tam giác \(ABC\)vuông tại \(A\)đường cao \(AH\)

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}\Rightarrow AH=4,8\left(cm\right)\).

\(BC^2=AB^2+AC^2\)(định lí Pythagore) 

\(=6^2+8^2=100\)

\(\Rightarrow BC=10\left(cm\right)\)

\(HC=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\left(cm\right)\)

\(HB=BC-HC=10-6,4=3,6\left(cm\right)\)

Xét tam giác \(AHB\)vuông tại \(H\)đường cao \(HQ\)

\(AQ=\frac{AH^2}{AB}=\frac{4,8^2}{6}=3,84\left(cm\right)\)

Xét tam giác \(ACQ\)vuông tại \(A\)

\(CQ^2=AC^2+AQ^2=8^2+3,84^2\Rightarrow CQ=\frac{8\sqrt{769}}{25}\left(cm\right)\)

4 tháng 8 2017

A B C E F H M K I

A. Ta có \(\frac{AH}{AC}=\frac{3}{5}\Rightarrow AC=\frac{5}{3}AH;BC=\frac{AB.AC}{AH}=\frac{AB.5AH}{3.AH}=\frac{5}{3}AB\)

Theo định lí Pitago ta có \(AB^2+AC^2=BC^2\Rightarrow15^2+\frac{25}{9}AH^2=\frac{25}{9}.15^2\Rightarrow AH^2=144\Rightarrow AH=12\left(cm\right)\)

\(\Rightarrow AC=\frac{5}{3}.12=20\Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

Theo hệ thức lượng trong tam giác vuông ta có \(BH=\frac{AB^2}{AC}=9;CH=\frac{AC^2}{BC}=16\left(cm\right)\)

b. Theo hệ thức lượng trong tam giác vuông ta có \(BE=\frac{BH^2}{AB}=5,4\left(cm\right);CF=\frac{CH^2}{AC}=12,8\left(cm\right)\)

Ta có \(AH^3=12^3=1728\)

\(BC.BE.CF=25.5,4.12,8=1728\)

Vậy \(AH^3=BC.BE.CF\)

c. Ta kẻ \(CK⊥BC\)tại M \(\Rightarrow\)yêu cầu bài toán \(\Leftrightarrow\)chứng minh M là trung điểm BC 

Ta gọi I là giao điểm của AH và EF

Xét \(\Delta AKI\)và \(\Delta AHM\)

có \(\hept{\begin{cases}\widehat{K}=\widehat{H}=90^0\\\widehat{Achung}\end{cases}\Rightarrow\Delta AKI~\Delta AHM\left(g-g\right)}\)

\(\Rightarrow\widehat{AIF}=\widehat{AMB}\)

Ta chứng minh được \(AFHE\)là hình chữ nhật vì \(\widehat{F}=\widehat{A}=\widehat{E}=90^0\)

\(\Rightarrow\widehat{IAF}=\widehat{IFA}\)\(\Rightarrow\widehat{FMA}=180^0-2\widehat{MAF}\left(1\right)\)

Lại có \(\widehat{HBA}=\widehat{IAF}\Rightarrow\widehat{AMH}=180^0-2\widehat{HBA}\)

\(\Rightarrow\Delta AMB\)cân tại  I \(\Rightarrow MA=MB\)

Tương tự chứng minh được \(MA=MC\)

Vậy M là trung điểm BC hay ta có đpcm 

25 tháng 7 2018

a) Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:

\(AH^2=AM\cdot AB\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:

\(AH^2=AN\cdot AC\left(2\right)\)

Từ(1) và (2) ta được: \(AM\cdot AB=AN\cdot AC\)

b) Ta có: MHNA là hình chữ nhật(pn tự cm nha cái này dễ)

\(\Rightarrow MH=AN\)

Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:

\(HN^2=AN\cdot NC\)

Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:

\(HM^2=AM\cdot MB\)

Áp dụng hệ thức lượng trong \(\Delta vAHN\), ta có:

\(AN^2+HN^2=AH^2\)

\(MH=AN\)

\(\Rightarrow MH^2+HN^2=AH^2\)

\(\Rightarrow BM\cdot MA+AN\cdot NC=BH\cdot HC\)

c) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AC^2=HC\cdot BC\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AB^2=HB\cdot BC\left(2\right)\)

Lấy (2) chia (1) ta được: \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)

d) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AC^2=HC\cdot BC\Rightarrow AC^4=HC^2\cdot BC^2\)

\(\Rightarrow AC^4=NC\cdot AC\cdot BC^2\Rightarrow AC^3=NC\cdot BC^2\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AB^2=HB\cdot BC\Rightarrow AB^4=HB^2\cdot BC^2\)

\(\Rightarrow AB^4=BM\cdot AB\cdot BC^2\Rightarrow AB^3=BM\cdot BC^2\left(2\right)\)

Lấy (2) chia (1) ta được: \(\dfrac{BM}{CN}=\left(\dfrac{AB}{AC}\right)^3\)

14 tháng 6 2021

A B C H 12 20 E

a, Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=400-144=256\Leftrightarrow AC=16\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{144}+\frac{1}{256}=\frac{256+144}{144.256}\)

\(\Rightarrow400AH^2=36864\Leftrightarrow AH^2=\frac{36864}{400}=\frac{2304}{25}\Leftrightarrow AH=\frac{48}{5}\)cm 

14 tháng 6 2021

b, * Áp dụng hệ thức : \(AH^2=AE.AB\)(1) 

Áp dụng định lí Pytago cho tam giác AHC vuông tại H 

\(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\) (2) 

Từ (1) ; (2)  suy ra : \(AE.AB=AC^2-HC^2\)( đpcm )