Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DBAEC
xét △ABD có BD ⊥ AD nên vuông tại D
⇒ ^A1+^B1=900(1)
△ACE có CE ⊥ AE nên vuông tại E
⇒ ^A3+^C1=900(2)
^A2=900⇒^A1+^A3=180−^A2=900(3)
từ (1),(2),(3)⇒^A1=^C1
mà 2△ vuông ABD và ACE có cạnh huyền AB và AC bằng nhau (△ABC cân)
nên bằng nhau ⇒ AD = CE
AD2+BD2=AB2
⇔ CE2+BD2=AB2 không đổi
xét △ABD có BD ⊥ AD nên vuông tại D
⇒ A1ˆ+B1ˆ=900(1)A1^+B1^=900(1)
△ACE có CE ⊥ AE nên vuông tại E
⇒ A3ˆ+C1ˆ=900(2)A3^+C1^=900(2)
A2ˆ=900⇒A1ˆ+A3ˆ=180−A2ˆ=900(3)A2^=900⇒A1^+A3^=180−A2^=900(3)
từ (1),(2),(3)⇒A1ˆ=C1ˆ(1),(2),(3)⇒A1^=C1^
mà 2△ vuông ABD và ACE có cạnh huyền AB và AC bằng nhau (△ABC cân)
nên bằng nhau ⇒ AD = CE
AD2+BD2=AB2AD2+BD2=AB2
⇔ CE2+BD2=AB2CE2+BD2=AB2 không đổi
bn tham khảo link dưới nha!
https://olm.vn/hoi-dap/question/1167250.html
CHÚC BN HỌC TỐT!!!!!
Câu hỏi của Nhàn Lê - Toán lớp 7 - Học toán với OnlineMath . Tham khảo nhé
Mình ko cần hình vẽ nha bạn
Mình cần bạn hoặc người nào đó giải cho mình bài này thôi!
Mà dù sao thì cũng cám ơn bạn vì đã tốn công phí sức vẽ cái hình mà mình ko cần. Thanks!
cái thể loại 0 điểm hỏi đáp , đăng toán hình mà éo vẽ hình không = rác rưởi
A B C D E d 1 2 1
Có \(\hept{\begin{cases}\widehat{A_1}+\widehat{A_2}=90^o\\\widehat{A_1}+\widehat{B_1}=90^o\end{cases}\Rightarrow\widehat{A_2}=\widehat{B_1}}\)
Xét \(\Delta ADB\)và \(\Delta\)CEA có:
AB=AC (\(\Delta\)ABC cân tại A)
\(\widehat{A_2}=\widehat{B_1}\left(cmt\right)\)
\(\widehat{D}=\widehat{E}=90^o\)
=> \(\Delta ADB=\Delta CAE\left(ch-gn\right)\)
=> BD=AE
Ta có \(AE^2+CE^2=AC^2\)
=>\(BD^2+CE^2=AC^2\)
Vì AC không đổi => BD2+CE2 không đổi
Bài làm
A B C D E
Bài làm
Ta có: \(\widehat{DAB}+\widehat{BAE}=180^0\)( hai góc kề bù )
=> \(\widehat{DAB}+\widehat{BAC}+\widehat{CAE}=180^0\)
Hay \(\widehat{DAB}+90^0+\widehat{CAE}=180^0\)
=> \(\widehat{DAB}+\widehat{CAE}=180^0-90^0=90^0\) (1)
Xét tam giác ACE vuông ở E có:
\(\widehat{CAE}+\widehat{ECA}=90^0\) (2)
Từ (1), (2) => \(\widehat{ECA}=\widehat{DAB}\)
Lại xét tam giác ABD và tam giác CAE có:
\(\widehat{BDA}=\widehat{AEC}\left(=90^0\right)\)
Cạnh huyền AB = AC ( Do tam giác ABC vuông cân )
\(\widehat{ECA}=\widehat{DAB}\)( cmt )
Vậy tam giác ABD = tam giác CAE ( cạnh huyền - góc nhọn )
=> AD = EC ( hai cạnh tương ứng )
Xét tam giác ABD vuông ở D có:
AB2 = BD2 + AD2
Hay AB2 = BD2 + CE2
Mà AB luôn luôn không đổi.
=> Tổng của BD2 + CE2 có giá trị luôn không đổi/ ( đpcm )