Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{A_1}+\widehat{B_1}=90^o\) (\(\Delta ABH\) vuông tại H) (1)
lại có: \(\widehat{A_1}+\widehat{A_2}=90^o\) (\(\Delta ABC\) vuông tại A) (2)
Từ (1) và (2) \(\Rightarrow\) \(\widehat{A_2}=\widehat{B_1}\) (= \(\widehat{A_1}\))
\(\Delta ABH\) và \(\Delta CAH\) có:
\(\widehat{A_2}=\widehat{B_1}\) (cmt)
\(\widehat{H}\) chung
Vậy \(\Delta ABH\) đồng dạng với \(\Delta CAH\).
b) Áp dụng định lý Py-ta-go vào tam giác vuông AHB, ta có:
\(BH^2=AB^2-AH^2\)
\(\Leftrightarrow BH=\sqrt{15^2-12^2}\)
\(\Leftrightarrow BH\) = 9 (cm)
Ta có: \(\Delta ABH\) đồng dạng với \(\Delta CAH\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\dfrac{AH}{CH}=\dfrac{BH}{AH}\Leftrightarrow\dfrac{12}{CH}=\dfrac{9}{12}\Leftrightarrow CH=16\left(cm\right)\\\dfrac{AB}{AC}=\dfrac{BH}{AH}\Leftrightarrow\dfrac{15}{AC}=\dfrac{9}{12}\Leftrightarrow AC=20\left(cm\right)\end{matrix}\right.\)
Vậy BH = 9 (cm)
CH = 16 (cm)
AC = 20 (cm)
c) Ta có: \(\dfrac{CE}{AC}=\dfrac{CF}{CH}\left(\dfrac{5}{20}=\dfrac{4}{16}=\dfrac{1}{4}\right)\)
\(\Rightarrow\) EF // AH, mà AH \(\perp\) BC
\(\Rightarrow\) EF \(\perp\) BC
\(\Rightarrow\) \(\Delta CEF\) vuông tại F.
d) \(\Delta CEF\) và \(\Delta CBA\) có:
\(\widehat{A}=\widehat{F}\left(=90^o\right)\)
\(\widehat{C}\) chung
Vậy \(\Delta CEF\) đồng dạng với \(\Delta CBA\)
\(\Rightarrow\) \(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)
\(\Rightarrow\) CE . CA = CF . CB (đpcm)
a, ta có:
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}=\dfrac{4}{12}=\dfrac{5}{15}=\dfrac{1}{3}\)
=> DE//BC
vì DE//BC => tam giác ADE đồng dạng tam giác ADC
b, ta có EC= 15-5=10
BD= 12-4=8
vì EF//AB
=> \(\dfrac{EC}{AC}=\dfrac{EF}{AB}=\dfrac{10}{15}=\dfrac{EF}{12}\)
=> EF=(10.12):15=8
=> EF=BD
Xét tứ giác BDEF có:
EF=BD
EF//BD (vì EF//AB)
=> BDEF là hình bình hành
c,Vì BDEF là hình bình hành
=> DE=BF
mà \(\dfrac{DE}{BC}=\dfrac{AD}{AB}=\dfrac{DE}{18}=\dfrac{4}{12}\) (DE//BC)
=> DE=BF= (18.4):12=6
=>FC= 18-6=12
a) xét tam giác ABC và tam giác HAC có:
góc C chung
góc BAC = góc AHC (=90độ)
=> ΔABC ∼ ΔHAC (gg)
b) vì ΔABC ∼ ΔHAC (câu a)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(CÁC CẠNH T/Ứ TỈ LỆ)
=> AB.AB= HB.BC
=> \(AB^2\)= HB.BC
a,Xét \(\Delta\)AHB và AHD có:AH chung
BH=HD(gt)
AHB=AHD=90
vậy tam giác AHB= tam giác AHC
b,Tam giác ABD đều ms đúng chứ ạ bạn xem lại đề nha
Theo câu a ta có tam giác AHB =tam giác AHD nên AB=AD(2 cạnh tương ứng)
Xét tam giác ABD có AB=AD suy ra tam giác ABD cân mà góc ABD =60 độ(cái này bạn tự tính nha)
suy ra tam giác ABD đều
c,Dễ thấy được tam giác ADC cân tại D nên AD=DC
Xét tam giác AHD và tam giác CED có:
AD=DC
HDA=EDC(2 góc đối đỉnh)
AHD=CED=90
nên tam giác AHD=tam giác CED(ch-gn)
suy ra HD=DE mà theo câu a tam giác AHB=AHD nên HD=HB
vậy HB=DE(đpcm)
d, I là giao điểm của CE và AH chứ bạn
Xét tam giác AIC có : AE vuông góc với IC
CH vuông góc với IA
mà CH cắt AE tại D
nên D là trực tâm của tam giác IAC
hay ID vuống góc với AC
mặt khác DF vuông góc với AC
nên I ,D,F thẳng hàng
Chúc bạn học tốt
a,Xét \(\Delta AHB\)và \(\Delta AHD\)có
AH chung
HB=HD
\(\widehat{AHB}=\widehat{AHD}\left(=90^0\right)\)
=> \(\Delta AHB\)=\(\Delta AHD\)
b, xem lại đề
c, Vì \(\widehat{C}=30^0\Rightarrow\widehat{B}=30^0\Rightarrow\widehat{BAD}=60^0\)
\(\Rightarrow\widehat{DAC}=30^0\)
\(\Rightarrow\Delta DAC\)cân tại D
\(\Rightarrow DA=DC\)
Từ đó ta chứng minh được \(\Delta HAD=\Delta ECD\)
\(\Rightarrow HD=DE=BH\)(ĐPCM)
d,Xem lại đề
Chúc học tốt!!!!!! :)