\(\Delta ABC\) vuông tại A (AB<AC). Tia phân giác của ABC cắt AC tại M. Qua M, kẻ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

Xét ΔBAC có BM là phân giác

nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)

=>\(\dfrac{AM}{12}=\dfrac{CM}{20}\)

=>\(\dfrac{AM}{3}=\dfrac{CM}{5}\)

mà AM+CM=AC=16cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{16}{8}=2\)

=>\(AM=2\cdot3=6\left(cm\right);CM=2\cdot5=10\left(cm\right)\)

Xét ΔABC có MN//BC

nên \(\dfrac{MN}{BC}=\dfrac{AM}{AC}\)

=>\(\dfrac{MN}{20}=\dfrac{6}{16}=\dfrac{3}{8}\)

=>\(MN=20\cdot\dfrac{3}{8}=7,5\left(cm\right)\)

b: Xét ΔABC có MN//BC

nên \(\dfrac{CM}{MA}=\dfrac{BN}{NA}\)

mà \(\dfrac{CM}{MA}=\dfrac{BC}{BA}\)

nên \(\dfrac{BC}{BA}=\dfrac{BN}{NA}\)

\(\dfrac{AB}{AN}-\dfrac{BC}{AB}=\dfrac{AB}{AN}-\dfrac{BN}{AN}=\dfrac{AB-BN}{AN}=\dfrac{AN}{AN}=1\)

2 tháng 5 2017

a, ta có Bx // AC

=> góc BNM =góc MAC( so le trong )

xét tam giác BMN và CMA ,có :

góc BMN =góc CMA (đối đỉnh )

góc BNM =góc MAC (chứng minh trên)

=>tam giác BMN =tam giác CMA

b, do 2tam giác AMC =NMB( theo câu a)

=>\(\dfrac{BA}{AC}\)=\(\dfrac{MN}{AM}\)(1)

TA CÓ :AN là tia pg góc BÁC =>góc BAM = góc MAC

mà góc BNM = góc MAC ( chứng minh trên )

=>góc BNM = góc BAM

=>tam giác BAN cân tại B

=>BN =BA =>\(\dfrac{BA}{AC}\)= \(\dfrac{BN}{AC}\)(2)

Từ (1) và (2) =>\(\dfrac{BA}{AC}\)= \(\dfrac{MN}{AM}\)(ĐPCM)

c, ta có BN //AC

mà NP vuông góc với AC

=>BN vuông góc với NP

Xét tứ giác ABNP có 3 góc BNP=NPA =PAB=900

=>ABNP là hcn

mà hcn ABNP có BN =AB (vì tam giác ABN cân tại B)

=>ABNP là hình vuông =>BN =NP =AP=AB=6

Ta có :AP+PC =AC =>PC =8-6=2

xét tam giác PIC có PC //BN (do ac//bn)

=>\(\dfrac{BN}{PC}\)=\(\dfrac{NI}{IP}\)=\(\dfrac{BI}{IC}\)( theo hệ quả của định lí TA -LET)(3)

=>\(\dfrac{IN}{IP}\)=\(\dfrac{6}{2}\) =>\(\dfrac{NI}{NP-NI}\) =\(\dfrac{6}{2}\)=> 6(NP-NI)=2NI=>36-6NI=2NI

=>36=2NI+6NI => 36=8MI =>NI=4,5

ta có NP=NI+IP =>PI=6-4,5=1,5

Áp dụng định lí Py -ta go vào tam giác BIN

=> BI2=BN2+NI2=>BI2=62+4,52=56,25 =>BÍ=7,5

Ta có \(\dfrac{BI}{IC}\)=\(\dfrac{BN}{PC}\)=>\(\dfrac{BI}{IC}\)=\(\dfrac{6}{2}\) =>IC =\(\dfrac{BI.2}{6}\)=>IC=2,5

Vậy IC=2,5 ;BI=7,5 ; NI=4,5 ;IP=1,5

1 tháng 4 2019

Câu c hình như sai r

2 tháng 2 2021

Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).a. C... - H

ctv thảo (giỏi toán của chta bên h :v) đã làm rồi. bạn nào cần thì click vào đường link xanh bên trên nhé 

2 tháng 2 2021

Gọi I là giao điểm của DE và AH.

Câu a) Ta dễ dàng chứng minh được ADHE là hình chữ nhật, sử dụng tính chất hình chữ nhật để suy ra \(\widehat{ADE}=\widehat{DAH}\)

Mà \(\widehat{DAH}=\widehat{C}\) (cùng phụ với góc ABC) nên suy ra \(\widehat{ADE}=\widehat{C}\)

Từ đó dễ dàng chứng minh được tam giác AED đồng dạng với tam giác ABC theo trường hợp góc - góc.

Câu b) Chắc là phải sử dụng lớp 9 sẽ nhanh hơn. Các bạn thử tìm thêm cách khác nhé

Chứng minh tứ giác ABNM nội tiếp suy ra \(\widehat{ANB}=\widehat{AMB}\)

Dễ dàng chứng minh được \(\widehat{AMB}=\widehat{ABC}=\widehat{AED}\)

Suy ra: \(\widehat{ANB}=\widehat{AED}\)và hai góc này ở vị trí đồng vị, suy ra: DE //BN

Câu 3. Sử dụng tỉ số  đồng dạng hợp lí rồi suy ra kết quả

Ta dễ dàng chứng minh được: \(\Delta BDH\)\(\Delta BAC\).và tính được \(BD=\frac{DH.AB}{AC}\)

Chứng minh được: \(\Delta CEH\)\(\Delta CAB\).và tính được \(CE=\frac{EH.AC}{AB}\)

Chứng minh được: \(\Delta DHE\)\(\Delta BAC\).và suy ra được \(\frac{DH}{EH}=\frac{AB}{AC}\)

Suy ra: \(\frac{BD}{CE}=\frac{DH.AB}{AC}:\frac{EH.AC}{AB}=\frac{AB^2.DH}{AC^2.EH}=\frac{AB^2.AB}{AC^2.AC}\)

Vậy \(\frac{BD}{CE}=\frac{AB^3}{AC^3}\)

11 tháng 5 2018

a)  Xét  \(\Delta ABC\)và   \(\Delta MDC\)có:

      \(\widehat{C}\) chung

     \(\widehat{CAB}=\widehat{CMD}=90^0\)

suy ra:   \(\Delta ABC~\Delta MDC\)(g.g)

b)  Xét  \(\Delta BMI\)và    \(\Delta BAC\)có:

         \(\widehat{B}\)chung

        \(\widehat{BMI}=\widehat{BAC}=90^0\) 
suy ra:   \(\Delta BMI~\Delta BAC\) (g.g)

\(\Rightarrow\)\(\frac{BI}{BC}=\frac{BM}{BA}\) 

\(\Rightarrow\)\(BI.BA=BC.BM\)

c)    \(\frac{BI}{BC}=\frac{BM}{BA}\) (câu b)   \(\Rightarrow\)\(\frac{BI}{BM}=\frac{BC}{BA}\)

Xét  \(\Delta BIC\)và    \(\Delta BMA\)có:

     \(\widehat{B}\)chung

    \(\frac{BI}{BM}=\frac{BC}{BA}\) (cmt)

suy ra:   \(\Delta BIC~\Delta BMA\) (g.g)

\(\Rightarrow\) \(\widehat{ICB}=\widehat{BAM}\)    (1)

c/m:  \(\Delta CAI~\Delta BKI\) (g.g)   \(\Rightarrow\)\(\frac{IA}{IK}=\frac{IC}{IB}\) \(\Rightarrow\)\(\frac{IA}{IC}=\frac{IK}{IB}\)

Xét  \(\Delta IAK\)và     \(\Delta ICB\)có:

      \(\widehat{AIK}=\widehat{CIB}\) (dd)

      \(\frac{IA}{IC}=\frac{IK}{IB}\) (cmt)

suy ra:   \(\Delta IAK~\Delta ICB\)(g.g)

\(\Rightarrow\)\(\widehat{IAK}=\widehat{ICB}\) (2) 

Từ (1) và (2) suy ra:  \(\widehat{IAK}=\widehat{BAM}\)

hay  AB là phân giác của \(\widehat{MAK}\)

d)  \(AM\)là phân giác \(\widehat{CAB}\) \(\Rightarrow\)\(\widehat{MAB}=45^0\)

mà   \(\widehat{MAB}=\widehat{ICB}\) (câu c)  

\(\Rightarrow\)\(\widehat{ICB}=45^0\)

\(\Delta CKB\)vuông tại K có  \(\widehat{KCB}=45^0\)

\(\Rightarrow\)\(\widehat{CBK}=45^0\)

\(\Delta MBD\) vuông tại M  có   \(\widehat{MBD}=45^0\)

\(\Rightarrow\)\(\widehat{MDB}=45^0\)

hay   \(\Delta MBD\)vuông cân tại M

\(\Rightarrow\)\(MB=MD\)

\(\Delta ABC\) có  AM là phân giác 

\(\Rightarrow\)\(\frac{MB}{AB}=\frac{MC}{AC}\)

ÁP dụng định ly Pytago vào tam giác vuông ABC ta có:

     \(AB^2+AC^2=BC^2\)

\(\Rightarrow\)\(BC=10\)

ÁP dụng tính chất dãy tỉ số = nhau ta có:

    \(\frac{MB}{AB}=\frac{MC}{AC}=\frac{MB+MC}{AB+AC}=\frac{5}{7}\)

suy ra:   \(\frac{MB}{AB}=\frac{5}{7}\)  \(\Rightarrow\)\(MB=\frac{40}{7}\)

mà   \(MB=MD\) (cmt)

\(\Rightarrow\)\(MD=\frac{40}{7}\)

Vậy  \(S_{CBD}=\frac{1}{2}.CB.DM=\frac{1}{2}.10.\frac{40}{7}=\frac{200}{7}\)

\(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.8.6=24\)

\(\Delta ABC\) có  AM  là phân giác

\(\Rightarrow\)\(\frac{S_{CMA}}{S_{BMA}}=\frac{AC}{AB}=\frac{3}{4}\)

\(\Rightarrow\)\(\frac{S_{CMA}}{3}=\frac{S_{BMA}}{4}=\frac{S_{CMA}+S_{BMA}}{3+4}=\frac{24}{7}\)

\(\Rightarrow\)\(S_{CMA}=\frac{72}{7}\)

Vậy   \(S_{AMBD}=S_{CBD}-S_{CMA}=\frac{200}{7}-\frac{72}{7}=\frac{128}{7}\)

11 tháng 5 2018

C A M B K D I

a)  xét \(\Delta ABC\)  và \(\Delta MDC\)  có 

\(\widehat{ACB}=\widehat{MCD}\)  ( góc chung)

\(\widehat{CAB}=\widehat{CMD}=90^0\)  ( giả thiết )

\(\Rightarrow\Delta ABC\infty\Delta MDC\)  \(\left(g.g\right)\)

b) xét  \(\Delta BIM\) và \(\Delta BCA\)  có 

\(\widehat{IBM}=\widehat{CBA}\)  ( góc chung )

\(\widehat{BMI}=\widehat{BAC}=90^0\)

\(\Rightarrow\Delta BIM\infty\Delta BCA\left(g.g\right)\)

\(\Rightarrow\frac{BI}{BM}=\frac{BC}{BA}\)

\(\Rightarrow BI.BA=BM.BC\)

P/S tạm thời 2 câu này trước đi đã 

29 tháng 3 2018

a)  Xét   \(\Delta HAC\) và     \(\Delta MAH\)có:

\(\widehat{AHC}=\widehat{AMH}=90^0\)

\(\widehat{HAC}\)      CHUNG

suy ra:   \(\Delta HAC~\Delta MAH\)

\(\Rightarrow\)\(\frac{AH}{AM}=\frac{AC}{AH}\)\(\Rightarrow\)\(AH^2=AM.AC\)

a: Xét ΔBAC có DF//AC

nên BF/FA=BD/DC=1/2

=>BF=1/2FA
=>AF/AB=2/3

Xét ΔCAB có DE//AB

nên CD/CB=CE/CA

=>CE/CA=2/3

=>CE=2/3CA

=>AE=1/3CA

=>AE/CE=1/2

=>AE/AC=1/3

b: \(\dfrac{AE}{EM}=\dfrac{AE}{\dfrac{1}{2}\cdot AC}=\dfrac{AE}{AC}\cdot\dfrac{1}{\dfrac{1}{2}}=\dfrac{1}{3}\cdot2=\dfrac{2}{3}=\dfrac{AF}{FB}\)

=>EF//BM