Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEMN có
\(\widehat{AEM}=\widehat{ANM}=\widehat{NAE}=90^0\)
Do đó: AEMN là hình chữ nhật
Bài 1:
a: Xét ΔABC có AE/AB=AN/AC
nên EN//BC
=>EN//HM
Xét tứ giác AEMN có
NM//AE
NM=AE
Do đó: AEMN là hình bình hành
mà góc NAE=90 độ
nên AEMN là hình chữ nhật
=>AM=NE
Ta có: ΔHCA vuông tại H
mà HN là trung tuyến
nên HN=AN=CN=ME
Ta có: ΔHAB vuông tại H
mà HE là trung tuyến
nên HE=AE=BE
Xét tứ giác MHEN có
MH//EN
ME=HN
Do đó: MHEN là hình bình hành
b: Xét ΔNAE và ΔNHE có
NA=NH
AE=HE
NE chung
Do đó: ΔNAE=ΔNHE
=>góc NHE=90 độ
c: Xét ΔEAK vuông tại E và ΔEBM vuông tạiE có
EA=EB
góc EAK=góc EBM
Do đó: ΔEAK=ΔEBM
=>EK=EM
Xét tứ giác AKBM có
E là trung điểm chung của AB và KM
MA=MB
Do đó; AKBM là hìnhthoi
Bài 2.
-Hình bn tự vẽ nhé!
Bài làm:
a, Có F là trung điểm của AC (gt)
\(\Rightarrow\)AF=\(\dfrac{1}{2}\)AC (1)
Xét tam giác ABC ta có:
E là trung điểm của AB (gt)
G là trung điểm của BC (gt)
\(\Rightarrow\)EG là đường trung bình của tam giác ABC
\(\Rightarrow\)EG=\(\dfrac{1}{2}\)AC và EG song song với AC hay EG song song với AF (2)
Từ (1) và (2)\(\Rightarrow\)AEGF là hình bình hành.
mà góc A= 90 độ (gt)\(\Rightarrow\)AEGF là hình chữ nhật.
AEGF là hcn nên có AE song song với GF ( Tính chất hcn) hay EB song song với IF (3)
mà EI song song với BF (gt) (4)
Từ (3) và (4)\(\Rightarrow\)BFIE là hình bình hành.
b, Theo a, ta có: BFIE là hình bình hành nên BE=FI (tính chất hình bình hành) và AEGF là hình chữ nhật nên AE=GF (tính chất hình chữ nhật)
mà AE=EB (E là trung điểm của AB)
\(\Rightarrow\)GF=FI.
Xét tứ giác AGCI có: FA=FC (F là trung điểm của AC), GF=FI (cmt)
\(\Rightarrow\)AGCI là hình bình hành.
mà GI vuông góc với AC nên hình bình hành AGCI là hình thoi
c, Theo b, ta có: AGCI là hình thoi
Để tứ giác (hình thoi) AGCI là hình vuông thì góc AGC= 90 độ hay AG vuông góc với BC.
Khi đó AG là đường cao của tam giác ABC
Mặt khác AC là đường trung tuyến của tam giác ABC ( G lf trung điểm của BC)\(\Rightarrow\) Tam giác ABC cân tại A
mà tam giác ABC vuông tại (gt) nên tam giác ABC vuông cân tại A thì AGCI là hình vuông.
Bài 1:
a: Xét ΔABC có AE/AB=AN/AC
nên EN//BC
=>EN//HM
Xét tứ giác AEMN có
NM//AE
NM=AE
Do đó: AEMN là hình bình hành
mà góc NAE=90 độ
nên AEMN là hình chữ nhật
=>AM=NE
Ta có: ΔHCA vuông tại H
mà HN là trung tuyến
nên HN=AN=CN=ME
Ta có: ΔHAB vuông tại H
mà HE là trung tuyến
nên HE=AE=BE
Xét tứ giác MHEN có
MH//EN
ME=HN
Do đó: MHEN là hình bình hành
b: Xét ΔNAE và ΔNHE có
NA=NH
AE=HE
NE chung
Do đó: ΔNAE=ΔNHE
=>góc NHE=90 độ
c: Xét ΔEAK vuông tại E và ΔEBM vuông tạiE có
EA=EB
góc EAK=góc EBM
Do đó: ΔEAK=ΔEBM
=>EK=EM
Xét tứ giác AKBM có
E là trung điểm chung của AB và KM
MA=MB
Do đó; AKBM là hìnhthoi
Bài 1:
a: Xét ΔABC có AE/AB=AN/AC
nên EN//BC
=>EN//HM
Xét tứ giác AEMN có
NM//AE
NM=AE
Do đó: AEMN là hình bình hành
mà góc NAE=90 độ
nên AEMN là hình chữ nhật
=>AM=NE
Ta có: ΔHCA vuông tại H
mà HN là trung tuyến
nên HN=AN=CN=ME
Ta có: ΔHAB vuông tại H
mà HE là trung tuyến
nên HE=AE=BE
Xét tứ giác MHEN có
MH//EN
ME=HN
Do đó: MHEN là hình bình hành
b: Xét ΔNAE và ΔNHE có
NA=NH
AE=HE
NE chung
Do đó: ΔNAE=ΔNHE
=>góc NHE=90 độ
c: Xét ΔEAK vuông tại E và ΔEBM vuông tạiE có
EA=EB
góc EAK=góc EBM
Do đó: ΔEAK=ΔEBM
=>EK=EM
Xét tứ giác AKBM có
E là trung điểm chung của AB và KM
MA=MB
Do đó; AKBM là hìnhthoi