ΔABCvuông ở A ( AB < AC ) . Kẻ đường cao AH . Gọi E ,N, M theo thứ tự là trung điể...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2022

Bài 1:

a: Xét ΔABC có AE/AB=AN/AC

nên EN//BC

=>EN//HM

Xét tứ giác AEMN có

NM//AE

NM=AE
Do đó: AEMN là hình bình hành

mà góc NAE=90 độ

nên AEMN là hình chữ nhật

=>AM=NE

Ta có: ΔHCA vuông tại H

mà HN là trung tuyến

nên HN=AN=CN=ME

Ta có: ΔHAB vuông tại H

mà HE là trung tuyến

nên HE=AE=BE

Xét tứ giác MHEN có

MH//EN

ME=HN

Do đó: MHEN là hình bình hành

b: Xét ΔNAE và ΔNHE có

NA=NH

AE=HE

NE chung

Do đó: ΔNAE=ΔNHE

=>góc NHE=90 độ

c: Xét ΔEAK vuông tại E và ΔEBM vuông tạiE có

EA=EB

góc EAK=góc EBM

Do đó: ΔEAK=ΔEBM

=>EK=EM

Xét tứ giác AKBM có

E là trung điểm chung của AB và KM

MA=MB

Do đó; AKBM là hìnhthoi

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BCa) Chứng minh : Tứ giác EHMN là hình thang cânb) Chứng minh: HE ⊥ HNc) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoid) Chứng minh: AM, EN,BF và KC đồng quyBài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ...
Đọc tiếp

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC

a) Chứng minh : Tứ giác EHMN là hình thang cân

b) Chứng minh: HE ⊥ HN

c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi

d) Chứng minh: AM, EN,BF và KC đồng quy

Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)

a) Chứng minh: Tứ giác AFCE là hình bình hành

b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng

c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành

d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?

MÌNH CẦN GẤP!! CÁC BẠN GIÚP MÌNH NHA!!! 

0
Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BCa) Chứng minh : Tứ giác EHMN là hình thang cânb) Chứng minh: HE ⊥ HNc) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoid) Chứng minh: AM, EN,BF và KC đồng quyBài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE...
Đọc tiếp

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC

a) Chứng minh : Tứ giác EHMN là hình thang cân

b) Chứng minh: HE ⊥ HN

c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi

d) Chứng minh: AM, EN,BF và KC đồng quy

Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)

a) Chứng minh: Tứ giác AFCE là hình bình hành

b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng

c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành

d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?

0
Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BCa) Chứng minh : Tứ giác EHMN là hình thang cânb) Chứng minh: HE ⊥ HNc) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoid) Chứng minh: AM, EN,BF và KC đồng quyBài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ...
Đọc tiếp

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC

a) Chứng minh : Tứ giác EHMN là hình thang cân

b) Chứng minh: HE ⊥ HN

c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi

d) Chứng minh: AM, EN,BF và KC đồng quy

Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)

a) Chứng minh: Tứ giác AFCE là hình bình hành

b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng

c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành

d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?

Giúp mình với mình đang cần gấp! Cảm ơn mọi người nha!

0
21 tháng 12 2021

a: Xét tứ giác AEMN có 

\(\widehat{AEM}=\widehat{ANM}=\widehat{NAE}=90^0\)

Do đó: AEMN là hình chữ nhật

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC a) Chứng minh : Tứ giác EHMN là hình thang cân b) Chứng minh: HE ⊥ HN c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi d) Chứng minh: AM, EN,BF và KC đồng quy Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE...
Đọc tiếp

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC

a) Chứng minh : Tứ giác EHMN là hình thang cân

b) Chứng minh: HE ⊥ HN

c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi

d) Chứng minh: AM, EN,BF và KC đồng quy

Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)

a) Chứng minh: Tứ giác AFCE là hình bình hành

b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng

c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành

d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?

giúp mình với mình đang cần gấp! Cảm ơn mọi người

1
17 tháng 11 2022

Bài 1:

a: Xét ΔABC có AE/AB=AN/AC

nên EN//BC

=>EN//HM

Xét tứ giác AEMN có

NM//AE

NM=AE
Do đó: AEMN là hình bình hành

mà góc NAE=90 độ

nên AEMN là hình chữ nhật

=>AM=NE

Ta có: ΔHCA vuông tại H

mà HN là trung tuyến

nên HN=AN=CN=ME

Ta có: ΔHAB vuông tại H

mà HE là trung tuyến

nên HE=AE=BE

Xét tứ giác MHEN có

MH//EN

ME=HN

Do đó: MHEN là hình bình hành

b: Xét ΔNAE và ΔNHE có

NA=NH

AE=HE

NE chung

Do đó: ΔNAE=ΔNHE

=>góc NHE=90 độ

c: Xét ΔEAK vuông tại E và ΔEBM vuông tạiE có

EA=EB

góc EAK=góc EBM

Do đó: ΔEAK=ΔEBM

=>EK=EM

Xét tứ giác AKBM có

E là trung điểm chung của AB và KM

MA=MB

Do đó; AKBM là hìnhthoi

14 tháng 12 2018

Bài 2.

-Hình bn tự vẽ nhé!

Bài làm:

a, Có F là trung điểm của AC (gt)

\(\Rightarrow\)AF=\(\dfrac{1}{2}\)AC (1)

Xét tam giác ABC ta có:

E là trung điểm của AB (gt)

G là trung điểm của BC (gt)

\(\Rightarrow\)EG là đường trung bình của tam giác ABC

\(\Rightarrow\)EG=\(\dfrac{1}{2}\)AC và EG song song với AC hay EG song song với AF (2)

Từ (1) và (2)\(\Rightarrow\)AEGF là hình bình hành.

mà góc A= 90 độ (gt)\(\Rightarrow\)AEGF là hình chữ nhật.

AEGF là hcn nên có AE song song với GF ( Tính chất hcn) hay EB song song với IF (3)

mà EI song song với BF (gt) (4)

Từ (3) và (4)\(\Rightarrow\)BFIE là hình bình hành.

b, Theo a, ta có: BFIE là hình bình hành nên BE=FI (tính chất hình bình hành) và AEGF là hình chữ nhật nên AE=GF (tính chất hình chữ nhật)

mà AE=EB (E là trung điểm của AB)

\(\Rightarrow\)GF=FI.

Xét tứ giác AGCI có: FA=FC (F là trung điểm của AC), GF=FI (cmt)

\(\Rightarrow\)AGCI là hình bình hành.

mà GI vuông góc với AC nên hình bình hành AGCI là hình thoi

c, Theo b, ta có: AGCI là hình thoi

Để tứ giác (hình thoi) AGCI là hình vuông thì góc AGC= 90 độ hay AG vuông góc với BC.

Khi đó AG là đường cao của tam giác ABC

Mặt khác AC là đường trung tuyến của tam giác ABC ( G lf trung điểm của BC)\(\Rightarrow\) Tam giác ABC cân tại A

mà tam giác ABC vuông tại (gt) nên tam giác ABC vuông cân tại A thì AGCI là hình vuông.

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC a) Chứng minh : Tứ giác EHMN là hình thang cân b) Chứng minh: HE ⊥ HN c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi d) Chứng minh: AM, EN,BF và KC đồng quy Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE...
Đọc tiếp

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC

a) Chứng minh : Tứ giác EHMN là hình thang cân

b) Chứng minh: HE ⊥ HN

c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi

d) Chứng minh: AM, EN,BF và KC đồng quy

Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)

a) Chứng minh: Tứ giác AFCE là hình bình hành

b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng

c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành

d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?

1
17 tháng 11 2022

Bài 1:

a: Xét ΔABC có AE/AB=AN/AC

nên EN//BC

=>EN//HM

Xét tứ giác AEMN có

NM//AE

NM=AE
Do đó: AEMN là hình bình hành

mà góc NAE=90 độ

nên AEMN là hình chữ nhật

=>AM=NE

Ta có: ΔHCA vuông tại H

mà HN là trung tuyến

nên HN=AN=CN=ME

Ta có: ΔHAB vuông tại H

mà HE là trung tuyến

nên HE=AE=BE

Xét tứ giác MHEN có

MH//EN

ME=HN

Do đó: MHEN là hình bình hành

b: Xét ΔNAE và ΔNHE có

NA=NH

AE=HE

NE chung

Do đó: ΔNAE=ΔNHE

=>góc NHE=90 độ

c: Xét ΔEAK vuông tại E và ΔEBM vuông tạiE có

EA=EB

góc EAK=góc EBM

Do đó: ΔEAK=ΔEBM

=>EK=EM

Xét tứ giác AKBM có

E là trung điểm chung của AB và KM

MA=MB

Do đó; AKBM là hìnhthoi