\(B=\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{c^2+a^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\). Rút gọn B...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 8 2017

Lời giải:

Do \(a+b+c=0\rightarrow b+c=-a\), suy ra:

\(b^2+c^2-a^2=(b+c)^2-a^2-2bc=(-a)^2-a^2-2bc=-2bc\)

\(\Rightarrow \frac{1}{b^2+c^2-a^2}=\frac{1}{-2bc}\)

Tương tự với các phân thức còn lại:

\(\Rightarrow B=\frac{1}{-2bc}+\frac{1}{-2ac}+\frac{1}{-2ab}=\frac{-1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=\frac{-1}{2}.\frac{a+b+c}{abc}=0\)

Vậy \(B=0\)

29 tháng 8 2017

Từ \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Rightarrow a^2+b^2+c^2=-2ab-2bc-2ca\)

Khi đó \(\dfrac{1}{b^2+c^2-a^2}=\dfrac{1}{-2ab-2bc-2ca-2a^2}=\dfrac{1}{-2\left(a+b\right)\left(a+c\right)}\)

Viết lại \(B=-\dfrac{1}{2}\left(\dfrac{1}{\left(a+b\right)\left(a+c\right)}+\dfrac{1}{\left(b+c\right)\left(a+b\right)}+\dfrac{1}{\left(a+c\right)\left(b+c\right)}\right)\)

\(=-\dfrac{1}{2}\cdot\dfrac{b+c+c+a+a+b}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)\(=-\dfrac{1}{2}\cdot\dfrac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=0\)

20 tháng 12 2018

Bài 2:

a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)

\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)

\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)

\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)

\(a+b+c=0\)

Nên a + b = -c (1)

Thay (1) vào A, ta được:

\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)

\(A=\dfrac{1}{abc}.3abc\)

\(A=3\)

b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)

\(a+b+c=0\)

Nên b + c = -a

=> ( b + c )2 = (-a)2

=> b2 + c2 + 2bc = a2

=> b2 + c2 = a2 - 2bc (1)

Tương tự ta có: c2 + a2 = b2 - 2ac (2)

a2 + b2 = c - 2ab (3)

Thay (1), (2) và (3) vào B, ta được:

\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)

\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)

\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)

\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)

\(a^3+b^3+c^3=3abc\) ( câu a )

\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)

\(\Rightarrow B=\dfrac{3}{2}\)

20 tháng 12 2018

Bài 1:

a) GT: abc = 2

\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)

\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(M=\dfrac{1+b+bc}{bc+b+1}\)

\(M=1\)

b) GT: abc = 1

\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)

\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)

\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(N=\dfrac{1+b+bc}{bc+b+1}\)

\(N=1\)

AH
Akai Haruma
Giáo viên
24 tháng 3 2018

Lời giải:

Từ \(a+b+c=0\Rightarrow a=-(b+c)\)

\(\Rightarrow a^2=[-(b+c)]^2=b^2+2bc+c^2\)

\(\Rightarrow b^2+c^2-a^2=b^2+c^2-(b^2+2bc+c^2)=-2bc\)

\(\Rightarrow \frac{1}{b^2+c^2-a^2}=\frac{1}{-2bc}=\frac{-a}{2abc}\)

Hoàn toàn tương tự với các biểu thức còn lại và cộng theo vế:

\(A=\frac{-a}{2abc}+\frac{-b}{2abc}+\frac{-c}{2abc}=\frac{-(a+b+c)}{2abc}=0\)

24 tháng 3 2018

ta có

a+b+c =0

<=> a+b=-c

<=>(a+b)2 =(-c)2

<=>a2+b2+2ab=c2

<=>a2+b2-c2=-2ab

tương tự ta đc

c2+a2-b2=-2ac

b2+c2-a2=-2bc

thay vào A ta có

\(A=\dfrac{-1}{2bc}-\dfrac{1}{2ac}-\dfrac{1}{2ab}\)

<=> A=\(\dfrac{-a}{2abc}-\dfrac{b}{2abc}-\dfrac{c}{2abc}\)

<=> A=\(\dfrac{-\left(a+b+c\right)}{2abc}=0\) (vì a+b+c=0)

20 tháng 12 2019

cho mình hỏi bạn biết làm chưa nếu rồi thì giúp mình được không ạ mình ko biết làm

27 tháng 2 2018

a)\(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)

\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)

\(A=\dfrac{a^3+b^3+c^3}{abc}\)

\(A=\dfrac{3abc}{abc}=3\)(vì a+b+c=0)

b)Ta có: a+b+c=0

\(\Rightarrow\left\{{}\begin{matrix}a=-b-c\\b=-c-a\\c=-a-b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2=\left(b+c\right)^2\\b^2=\left(c+a\right)^2\\c^2=\left(a+b\right)^2\end{matrix}\right.\)

\(\Rightarrow B=\dfrac{a^2}{\left(b+c\right)^2-b^2-c^2}+\dfrac{b^2}{\left(a+c\right)^2-c^2-a^2}+\dfrac{c^2}{\left(a+b\right)^2-a^2-b^2}\)

\(\Rightarrow B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2ab}\)

\(\Rightarrow B=\dfrac{a^3+b^3+c^3}{2abc}\)

\(\Rightarrow B=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)(vì a+b+c=0)

27 tháng 2 2018

cm:nếu a+b+c=0 thì a^3+b^3+c^3=3abc

a^3+b^3+c^3=3abc

=>a^3+b^3+c^3-3abc=0

=>(a+b)^3-3ab(a+b)+c^3-3abc=0

=>[(a+b)^3+c^3]-3ab(a+b+c)=0

=>(a+b+c)[(a+b)^2-(a+b)c+c^2] -3ab(a+b+c)=0

=>(a+b+c)[(a+b)^2-(a+b)c+c^2-3ab]=0

vì a+b+c=0 nên a^3+b^3+c^3=3abc

thay kết quả vừa chúng minh vào đề bài ta đc

\(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}=\dfrac{a^3+b^3+c^3}{abc}=\dfrac{3abc}{abc}=3\)

chúc bạn học tốt ^ ^

17 tháng 3 2018

a)Svac-so:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2\left(đpcm\right)}\)

b)\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)

\(\Leftrightarrow\dfrac{1}{a^2+1}-\dfrac{1}{ab+1}+\dfrac{1}{b^2+1}-\dfrac{1}{ab+1}\ge0\)

\(\Leftrightarrow\dfrac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{b\left(a-b\right)}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b}{\left(b^2+1\right)\left(ab+1\right)}-\dfrac{a}{\left(a^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b\left(a^2+1\right)-a\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{ab\left(a-b\right)-\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\dfrac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)(luôn đúng)

22 tháng 11 2017

5)

a)

Có 3x+y = 1

\(\Rightarrow x+x+x+y=1\)

Áp dụng bất đẳng thức bunhiacopxki ta có :

\(\left(x^2+x^2+x^2+y^2\right)\left(1^2+1^2+1^2+1^2\right)\ge\left(x+x+x+y\right)^2\)

\(\Rightarrow3x^2+y^{2^{ }}.4\ge\left(3x+y\right)^2\)

\(\Rightarrow3x^2+y^2\ge\dfrac{1}{4}\)

b)

Áp dụng bất đẳng thức AM - GM ta có :

\(\left[{}\begin{matrix}a^2+1^2\ge2a\\b^2+1^2\ge2b\\c^2+1^2\ge2c\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(a+1\right)^2\ge4a^{ }\\\left(b+1\right)^2\ge4b^{ }\\\left(c+1\right)^2\ge4c^{ }\end{matrix}\right.\)

\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge4a^{ }.4b.4c^{ }\)

\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64a^{ }bc^{ }\)

\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64abc\)

\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64\)

\(\Rightarrow\left(a+1\right)^{ }\left(b+1\right)^{ }\left(c+1\right)^{ }\ge8\) \(\left(đpcm\right)\)

22 tháng 11 2017

3)

Sửa đề \(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)

Đặt b + c - a = x , a+c-b = y , a+b-c= z

\(\Rightarrow\left[{}\begin{matrix}2a=y+z\\2b=x+z\\2c=x+y\end{matrix}\right.\)

Có :

\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)

\(\Rightarrow\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\)

\(\Rightarrow\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)

\(\Rightarrow\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)

Áp dụng bất đẳng thức \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\forall a,b>0\)

\(\Rightarrow\) \(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)

\(\Rightarrow\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\ge6\)

\(\Rightarrow2\left(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\right)\ge6\)

\(\Rightarrow\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\) \(\left(đpcm\right)\)