\(a\ge0;b\ge0\) và \(a^2+b^2=1\)

chứng minh 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

ta có: \(a^2+b^2=1\Rightarrow\hept{\begin{cases}a^2\le1\\b^2\le1\end{cases}\Rightarrow\hept{\begin{cases}0\le a\le1\\0\le b\le1\end{cases}\Rightarrow}\hept{\begin{cases}a^3\le a^2\\b^3\le b^2\end{cases}}.}\)

\(\Rightarrow a^3+b^3\le a^2+b^2=1\)

\(\Rightarrow a^3+b^3\le1\)   (*)

Mặt khác ta có:  \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\) (BĐT bu-nhi-a)

\(\Leftrightarrow\left(a+b\right)^2\le2\) ( vì a^2 +b^2 =1)

\(\Leftrightarrow a+b\le\sqrt{2}\)  (1)

mà \(\left(a^2+b^2\right)^2\le\left(a+b\right)\left(a^3+b^3\right)\) (BĐT bu-nhi-a)

\(\Leftrightarrow1\le\left(a+b\right)\left(a^3+b^3\right)\)   (2)

Thay (1) vào(2) ta đc: \(1\le\sqrt{2}\left(a^3+b^3\right)\)

\(\Leftrightarrow a^3+b^3\ge\frac{1}{\sqrt{2}}\)   (**)

Từ (*);(**)=> đpcm

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

15 tháng 8 2017

Ta cm bằng cách bđ tương đương 

\(Cm:ab\left(a+b\right)^2\le\frac{1}{64}\Leftrightarrow64ab\left(a+b\right)^2\le1\Leftrightarrow8\left(a+b\right)\sqrt{ab}\le1.\)

Ta có:

\(8\left(a+b\right)\sqrt{ab}=4.\left(a+b\right).2\sqrt{ab}\le4.\frac{a+b+2\sqrt{ab}}{4}=\left(\sqrt{a}+\sqrt{b}\right)^2=1\left(đpcm\right)\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{4}\)

13 tháng 7 2017

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

13 tháng 7 2017

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

21 tháng 8 2017

a)  Giả sử bất đẳng thức trên là đúng \(\Rightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)\(\Rightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)(luôn đúng với mọi a,b,c), ta có ĐPCM                            câu b tương tự nha bn!

21 tháng 8 2017

Bài 2:Áp dụng BĐT AM-GM ta có: 

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)

Khi a=b=c

Bài 3:

Áp dụng BĐT C-S dạng ENgel ta có: 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=9\)

Khi \(a=b=c=\frac{1}{3}\)

Bài 4:

Áp dụng BĐT AM-GM ta có:

\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};x+z\ge2\sqrt{xz}\)

Nhân theo vế 3 BĐT trên ta có ĐPCM

Khi x=y=z