\(A=a^2+b^2+c^2,\) trong đó a và b là 2 số tự nhiên liên tiếp, \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

bản đồ hay hỏi?

A=(c+1)^2 

c=ab=>chắn=> c+1 le=> A le

10 tháng 12 2016

bị hỏng font tiếng việt  "Ạ le" nghĩa là le thêm dấu hỏi nữa

viết bằng thuật   toán

c=ab=2k=> c+1=2k+1=> A=2k+1;

tất nhiên đây không phải là một bài giải hoàn chỉnh

mấu chốt vấn đề là làm sao biến đổi  \(a^2+b^2+c^2=\left(c+1\right)^2\\ \)

3 tháng 6 2018

b, vì a và b là 2 stn liên tiếp nên a=b+1 hoặc b=a+1

cho b=a+1

\(A=a^2+b^2+c^2=a^2+b^2+a^2b^2=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)

\(=a^2+\left(a+1\right)^2\left(a^2+1\right)=a^2+\left(a^2+2a+1\right)\left(a^2+1\right)\)

\(=a^2+2a\left(a^2+1\right)+\left(a^2+1\right)^2=\left(a^2+a+1\right)^2\)

\(\Rightarrow\sqrt{A}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1=a\left(a+1\right)+1=ab+1\)

vì a b là 2 stn liên tiếp nên sẽ có 1 số chẵn\(\Rightarrow ab\)chẵn \(\Rightarrow ab+1\)lẻ \(\Rightarrow\sqrt{A}\)lẻ (đpcm)

4 tháng 6 2018

Làm cả câu a đi nhé! Nếu bạn làm được cả câu a thì mình k!  ^_^  *_*

3

Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+2a\left(b+c\right)+\left(b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\text{Đ}PCM\)

2b)

Ta có: \(x^2+y^2-4x-2y+5=0\Leftrightarrow x^2+y^2-4x-2y+4+1=0\Leftrightarrow\left(x-2\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)

c) \(x^4-11x^2+4x-21=0\Leftrightarrow x^4-10x^2+25-x^2+4x-4=0\)

\(\Leftrightarrow\left(x^2-5\right)^2-\left(x-2\right)^2=0\Leftrightarrow\left(x^2-x-5+2\right)\left(x^2+x-5-2\right)=0\)

đến đây tự làm

2 tháng 10 2020

a^2 + b^2 + c^2= ab + bc + ca

2 ( a^2 + b^2 + c^2 ) = 2 ( ab + bc + ca)

2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca

a^2 + a^2 + b^2 + b^2 + c^2+ c^2 – 2ab – 2bc – 2ca = 0

a^2 + b^2 – 2ab + b^2 + c^2 – 2bc + c² + a² – 2ca = 0

(a^2 + b^2 – 2ab) + (b^2 + c^2 – 2bc) + (c^2 + a^2 – 2ca) = 0

(a – b)^2 + (b – c)^2 + (c – a)^2 = 0

Vì (a-b)^2 lớn hơn hoặc bằng 0 với mọi a và b 

     (b-c)^2  lớn hơn hoặc bằng 0 với mọi c và b

     (c-a)^2 lớn hơn hoặc bằng 0 với mọi a và c

=> (a-b)^2 =0  ; (b-c)^2=0 ; (c-a)^2=0

=> a=b ; b=c ; c=a

=>a=b=c

24 tháng 5 2017

Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn

24 tháng 5 2017

bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x) 

VT (ở đề bài) = a+b+c 

<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0

từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r 

23 tháng 11 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

10 tháng 12 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

              

4 tháng 2 2021

Ta có: \(2a^2+a=3b^2+b\)

\(\Leftrightarrow\left(2a^2-2b^2\right)+\left(a-b\right)=b^2\)

\(\Leftrightarrow\left(2a+2b\right)\left(a-b\right)+\left(a-b\right)=b^2\)

\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)

*CM 2a+2b+1 và a-b nguyên tố cùng nhau

=> 2a+2b+1 cũng là 1 SCP

DD
4 tháng 2 2021

Ta có: 

\(2a^2+a=3b^2+b\)

\(\Leftrightarrow2a^2-2b^2+a-b=b^2\)

\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)

Ta có: 

Đặt \(d=\left(a-b,2a+2b+1\right)\).

\(\Rightarrow\hept{\begin{cases}a-b⋮d\\2a+2b+1⋮d\end{cases}}\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2⋮d^2\Rightarrow b⋮d\)

\(\Rightarrow\left(a-b\right)+b=a⋮d\)

\(\Rightarrow\left(2a+2b+1\right)-2a-2b=1⋮d\Rightarrow d=1\).

Do đó \(a-b,2a+2b+1\)là hai số chính phương. 

a) Xét hiệu a2+b2+c2+d2 -(a+b+c+d)

=a(a-10+b(b-1)+c(c-1)+d(d-1) \(⋮\)2

mà a2+b2+c2+d2 \(\ge\)0

=> a+b+c+d \(⋮\)2

hay a+b+c+d là hợp số

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-abcd-la-cac-so-tu-nhien-thoa-man-doi-1-khac-nhau-va-a2d2b2c2tchung-minh-abcd-va-acbd-khong-the-dong-thoi-la-so-nguyen-to.1540844491932