Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.
Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)
Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)
Từ (2) và (3) ta có đpcm.
Sai thì chịu
Xí quên bài 2 b:v
b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)
Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)
Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)
Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)
\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Bài 1:
dự đoán dấu = sẽ là \(a^2=b^2=c^2=\dfrac{1}{2}\) nên cứ thế mà chém thôi .
Ta có: \(\left(a^2+1\right)\left(b^2+1\right)=\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\)
Bunyakovsky:\(\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\)
\(VT=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\left(1+c^2\right)\ge\dfrac{3}{4}\left(a+b+c\right)^2\)(đpcm)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{2}}\)
P/s: còn 1 cách khác nữa đó là khai triển sau đó xài schur . Chi tiết trong tệp BĐT schur .pdf
bđt cần c/m <=>
\(\frac{1}{\left(a+c-b-c\right)^2}+\frac{\left(b+c\right)^2}{\left(a+c\right)^2\left(b+c\right)^2}+\frac{\left(a+c\right)^2}{\left(b+c\right)^2\left(a+c\right)^2}\ge4\\ \)
\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2\ge4\\ \)
\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2-2\ge2\)(đúng , theo cô-si)
ok
Akai Haruma em có cách khác:3 Cô check giúp em ạ.
Sử dụng nguyên lí Dirichlet ta có thể giả sử \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Rightarrow a^2b^2\ge a^2+b^2-1\)
Suy ra \(a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
Suy ra \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge\left[\left(2a\right)^2+\left(2b\right)^2+2^2+2^2\right]\left(1+1+1+c^2\right)\)
\(\ge\left(2a+2b+2c+2\right)^2=4\left(a+b+c+1\right)^2\) (Bunyakovski)
Đẳng thức xảy ra khi a = b = c = 1
Ngắn quá:))
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a^2+3)[1+\frac{1}{3}(b+c+1)^2]\geq (a+b+c+1)^2\)
\(\Leftrightarrow 4(a^2+3)[1+\frac{1}{3}(b+c+1)^2]\geq 4(a+b+c+1)^2\)
Để chứng minh được BĐT đã cho, ta chỉ cần chỉ ra:
\((b^2+3)(c^2+3)\geq 4[1+\frac{(b+c+1)^2}{3}]\)
\(\Leftrightarrow 3b^2c^2+5b^2+5c^2+11-8bc-8b-8c\geq 0\)
\(\Leftrightarrow 3(bc-1)^2+4(b-1)^2+4(c-1)^2+(b-c)^2\geq 0\) (luôn đúng)
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Lời giải:
\(a,b,c\geq 0\rightarrow 1-a,1-b,1-c\geq 0\)
Áp dụng BĐT Cauchy ngược dấu:
\((1-a)(1-c)\leq \left(\frac{1-a+1-c}{2}\right)^2=\left(\frac{2-a-c}{2}\right)^2=\left(\frac{1+b}{2}\right)^2\) (do $a+b+c=1$)
Do đó:
\(4(1-a)(1-b)(1-c)\leq 4(1-b)\left(\frac{1+b}{2}\right)^2=(1-b)(1+b)^2=(1+b)(1-b^2)\)
Vì \(b^2\geq 0\Rightarrow 1-b^2\leq 1\Rightarrow (1+b)(1-b^2)\leq 1+b=a+b+c+b=a+2b+c\)
Hay \(4(1-a)(1-b)(1-c)\leq a+2b+c\) (đpcm)
Dấu bằng xảy ra khi \((a,b,c)=(0,5; 0; 0,5)\)
Khôi Bùi Mysterious Person DƯƠNG PHAN KHÁNH DƯƠNG JakiNatsumi