Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=4(a+b)^2+c^2-4c(a+b)+4(b+c)^2+a^2-4a(b+c)+4(c+a)^2+b^2-4b(a+c)\)
\(\Leftrightarrow A=4(a+b)^2+4(b+c)^2+4(c+a)^2-8(ab+bc+ac)\)
\(\Leftrightarrow A=4(a^2+b^2+2ab)+4(b^2+c^2+2bc)+4(c^2+a^2+2ac)-8(ab+bc+ac)\)
\(\Leftrightarrow A= 8(a^2+b^2+c^2)=8m\)
\(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)
\(A=\left(2a+2b+2c-3c\right)^2+\left(2b+2c+2a-3a\right)^2+\left(2c+2a+2b-3b\right)^2\)
\(A=\left[2.\left(a+b+c\right)-3c\right]^2+\left[2.\left(a+b+c\right)-3a\right]^2+\left[2.\left(a+b+c\right)-3b\right]^2\)
Đặt \(a+b+c=n\)
\(\Rightarrow A=\left(2n-3c\right)^2+\left(2n-3a\right)^2+\left(2n-3b\right)\)
\(A=4n^2-12cn+9c^2+4n^2-12an+9a^2+4n^2-12bn+9b^2\)
\(A=12n.\left(n-a-b-c\right)+9.\left(a^2+b^2+c^2\right)\)
Ta có: \(a^2+b^2+c^2=m\)
\(\Rightarrow A=12.\left(a+b+c-a-b-c\right)+9m\)
\(A=9m\)
Vậy \(A=9m\)tại \(a^2+b^2+c^2=m\)
Tham khảo nhé~
Lời giải:
Đặt \(a+b+c=t\)
\(A=(2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2\)
\(=(2a+2b+2c-3c)^2+(2b+2c+2a-3a)^2+(2c+2a+2b-3b)^2\)
\(=(2t-3c)^2+(2t-3a)^2+(2t-3b)^2\)
\(=4t^2+9c^2-12tc+4t^2+9a^2-12ta+4t^2+9b^2-12tb\)
\(=12t^2+9(a^2+b^2+c^2)-12t(a+b+c)\)
\(=12t^2+9m-12t^2=9m\)
1. (a2+b2+ab)2-a2b2-b2c2-c2a2
=a4+b4+a2b2+2(a2b2+ab3+a3b)-a2b2-b2c2-c2a2
=a4+b4+2a2b2+2ab3+2a3b-b2c2-c2a2
=(a2+b2)2+2ab(a2+b2)-c2(a2+b2)
=(a2+b2)[(a+b)2-c2]
=(a2+b2)(a+b+c)(a+b-c)
2. a4+b4+c4-2a2b2-2b2c2-2a2c2=(a2-b2-c2)2
3. a(b3-c3)+b(c3-a3)+c(a3-b3)
=ab3-ac3+bc3-ba3+ca3-cb3
=a3(c-b)+b3(a-c)+c3(b-a)
=a3(c-b)-b3(c-a)+c3(b-a)
=a3(c-b)-b3(c-b+b-a)+c3(b-a)
=a3(c-b)-b3(c-b)-b3(b-a)+c3(b-a)
=(c-b)(a-b)(a2+ab+b2)-(b-a)(b-c)(b2+bc+c2)
=(a-b)(c-b)(a2+ab+2b2+bc+c2)
4. a6-a4+2a3+2a2=a4(a+1)(a-1)+2a2(a+1)=(a+1)(a5-a4+2a2)=a2(a+1)(a3-a2+2)
5. (a+b)3-(a-b)3=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]
=2b(3a2+b2)
6. x3-3x2+3x-1-y3=(x-1)3-y3=(x-1-y)[(x-1)2+(x-1)y+y2]
=(x-y-1)(x2+y2+xy-2x-y+1)
7. xm+4+xm+3-x-1=xm+3(x+1)-(x+1)=(x+1)(xm+3-1)
(Đúng nhớ like nhá !)
Minh Hải,Lê Thiên Anh,Nguyễn Huy Tú,Ace Legona,...giúp mk vs mai mk đi hk rùi
câu a (a+b+c)2 +(a+b-c)2 - 4c2= (a+b+c)2+(a+b-c+2c).(a+b-c-2c) =(a+b+c)2 +(a+b+c).(a+b-3c)=(a+b+c). (a+b+c+a+b-3c)=(a+b+c).2.(a+b-c)
câu b 4a2b2-(a2+b2-c2) = (2ab-a2-b2+c2).(2ab+a2+b2-c2)
= (c2-(a-b)2).((a+b)2-c2)
= (c-a+b).(c+a-b).(a+b-c).(a+b+c)
câu c a4+b4+c4-2a2b2+2b2c2-2a2c2-4b2c2=(a2-b2-c2)2-4b2c2=(a2-b2-c2-2bc).(a2-b2-c2+2bc)=(a2-(b+c)2).(a2-(b-c)2)=(a-b-c).(a+b+c).(a-b+c).(a+b-c)
câu d dùng pp xét giá trị riêng thay b =c (bạn tự giải ) thì đa thức này nếu coi là đa thức biến b thì đa thức A chia hết cho b-c
a,b,c bình đẳng => A chia hết cho c-a , a-b
=>A= k(a-b)(b-c)(c-a)
thay thử một bộ a,b,c bất kì => k=? (mình đang vội )
thay k tính đc vàoA= k(a-b)(b-c)(c-a)
\(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)
\(A=\left(2a+2b+2c-3x\right)^2+\left(2b+2c+2a-3a\right)^2+\left(2c+2a+2b-3b\right)^2\)
Đặt a + b + c = x thì:
\(A=\left(2x-3c\right)^2+\left(2x-3a\right)^2+\left(2x-3b\right)^2\)
\(=4x^2-12cx+9c^2+4x^2-12ax+9a^2+4x^2-12bx+9b^2\)
\(=12x^2-12x\left(a+b+c\right)+9\left(a^2+b^2+c^2\right)\)
\(12x^2-12x^2+9\left(a^2+b^2+c^2\right)=9\left(a^2+b^2+c^2\right)=9m\)
\(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)
\(A=4a^2+4b^2+c^2+8ab-4bc-4ac+4b^2+4c^2+a^2+8ac-4ca-4ba+4c^2+4a^2+b^2+8ca-4ab-4cb\)
\(A=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)=9m\)