\(A=2^1+3^5+4^9+...+2004^{8009}\). Tìm chữ số tận cùng của \(A\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

MÌNH ĐANG RẤT CẦN BÀI TOÁN NÀY !!!!!

8 tháng 7 2019

Ta có \(2^{4k+2}=16^k.4\)

Mà \(16^k\)luôn tận cùng là 6

=> Các số \(...2^{4k+2}\)luôn tận cùng là 4

Tương tự : \(...3^{4k+2}\)tận cùng là 3^2=9

                   \(...4^{4k+2}\)tận cùng là 6

                  \(...5^{4k+2}\)tận cùng là 5

                  ..........................................

                 \(...9^{4k+2}\)tận cùng là 1

=> \(..2^{4k+2}+..3^{4k+2}+...+..9^{4k+2}=..4+..9+..6+..5+...+..1=...4\)

Áp dụng 

=> \(A=\left(2^2+...+9^{30}\right)+...\left(1900^{4k+2}+...+1999^{4k'+2}\right)+\left(2000^{4k''+2}+...+2004\right)^{8010}\)

        \(=...4+...5+...5+...5+...+...5+...0\) 

        \(=...9\)

   Vậy A tận cùng là 9

14 tháng 3 2019

\(S=1+3^1+3^2+...+3^{30}\)

\(S=1+\left(3^1+3^3\right)+\left(3^2+3^4\right)+...+\left(3^{28}+3^{30}\right)\)

\(S=1+3.10+3^2.10+...+3^{28}.10\)

Có \(3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 0

\(\Rightarrow1+3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 1

=> Chữ số tận cùng của S là 1.

19 tháng 10 2017

mk cần gấp lắm rồi

19 tháng 10 2017

\(A=1+2+2^2+...+2^{99}\)

\(2A=2+2^2+2^3+2^{100}\)

\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)

\(A=2^{100}-1< 2^{100}\)

19 tháng 10 2017

A=2^100-1

suy ra A<2^100

24 tháng 8 2016

bí rồi à?

24 tháng 8 2016

1.a)21

   b)321

   cách làm tương tự như bài trên

11 tháng 9 2018

4^3^10=4^30=(4^2)^15=..........6^15=...........6

2^2^5=2^10=(2^4)^2 . 2^2=...........6^2 . ...........4=.............4

2^3^4=2^12=(2^4)^3=.............6^3=...............6

3^3^3=3^9=(3^4)^2 . 3=..............1^2 . 3=..............3

9^9^9=9^81=(9^2)^80 . 9=..............1^80 . 9=.................9