Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 bạn tham khảo cách làm của cô Linh Chi tại đây nhé :
Câu hỏi của nguyen trung nghia - Toán lớp 8 - Học toán với OnlineMath
Học tốt và cá tháng tư đừng để bị troll nha !!!!!!!!!!!
B1:
\(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=2+\frac{x}{y}+\frac{y}{x}\)
Nhờ dự đoán được điểm rơi,ta chứng minh bất đẳng thức sau luôn đúng:\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
Thật vậy !!!
\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
\(\Leftrightarrow\left(\frac{x}{y}-\frac{1}{2}\right)+\left(\frac{y}{x}-2\right)\le0\)
\(\Leftrightarrow\frac{2x-y}{2y}+\frac{y-2x}{x}\le0\)
\(\Leftrightarrow\frac{2x^2-xy+2y^2-4xy}{2xy}\le0\)
\(\Leftrightarrow2x^2-5xy+2y^2\le0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)\le0\) ( đúng )
Dấu "=" xảy ra tại \(x=1;y=2\)
Vậy \(M_{max}=\frac{9}{2}\Leftrightarrow x=1;y=2\)
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Cho \(x;y;z\ge0\)và \(xy+yz+zx=1\)Tìm GTLN
\(Q=9\left(x^2+y^2+z^2\right)-4\left(x^3+y^3+z^3\right)\)
đề dài v~
1.
a) \(f\left(x\right)=5x^2-2x+1\)
\(5f\left(x\right)=25x^2-10x+5\)
\(5f\left(x\right)=\left(25x^2-10x+1\right)+4\)
\(5f\left(x\right)=\left(5x-1\right)^2+4\)
Mà \(\left(5x-1\right)^2\ge0\)
\(\Rightarrow5f\left(x\right)\ge4\)
\(\Leftrightarrow f\left(x\right)\ge\frac{4}{5}\)
Dấu " = " xảy ra khi :
\(5x-1=0\Leftrightarrow x=\frac{1}{5}\)
Vậy ....
b) \(P\left(x\right)=3x^2+x+7\)
\(3P\left(x\right)=9x^2+3x+21\)
\(3P\left(x\right)=\left(9x^2+3x+\frac{1}{4}\right)+\frac{83}{4}\)
\(3P\left(x\right)=\left(3x+\frac{1}{2}\right)^2+\frac{83}{4}\)
Mà \(\left(3x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow3P\left(x\right)\ge\frac{83}{4}\)
\(\Leftrightarrow P\left(x\right)\ge\frac{83}{12}\)
Dấu "=" xảy ra khi :
\(3x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{6}\)
Vậy ...
c) \(Q\left(x\right)=5x^2-3x-3\)
\(5Q\left(x\right)=25x^2-15x-15\)
\(\Leftrightarrow5Q\left(x\right)=\left(25x^2-15x+\frac{9}{4}\right)-\frac{69}{4}\)
\(\Leftrightarrow5Q\left(x\right)=\left(5x-\frac{3}{2}\right)^2-\frac{69}{4}\)
Mà \(\left(5x-\frac{3}{2}\right)^2\ge0\)
\(\Rightarrow5Q\left(x\right)\ge\frac{-69}{4}\)
\(\Leftrightarrow Q\left(x\right)\ge-\frac{69}{20}\)
Dấu "=" xảy ra khi :
\(5x-\frac{3}{2}=0\Leftrightarrow x=0,3\)
Vậy ...
2.
a) \(f\left(x\right)=-3x^2+x-2\)
\(-3f\left(x\right)=9x^2-3x+6\)
\(-3f\left(x\right)=\left(9x^2-3x+\frac{1}{4}\right)+\frac{23}{4}\)
\(-3f\left(x\right)=\left(3x-\frac{1}{2}\right)^2+\frac{23}{4}\)
Mà \(\left(3x-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow-3f\left(x\right)\ge\frac{23}{4}\)
\(\Leftrightarrow f\left(x\right)\le\frac{23}{12}\)
Dấu "=" xảy ra khi :
\(3x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{6}\)
Vậy ...
b) \(P\left(x\right)=-x^2-7x+1\)
\(-P\left(x\right)=x^2+7x-1\)
\(-P\left(x\right)=\left(x^2+7x+\frac{49}{4}\right)-\frac{53}{4}\)
\(-P\left(x\right)=\left(x+\frac{7}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x+\frac{7}{2}\right)^2\ge0\)
\(\Rightarrow-P\left(x\right)\ge-\frac{53}{4}\)
\(\Leftrightarrow P\left(x\right)\le\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x+\frac{7}{2}=0\Leftrightarrow x=-\frac{7}{2}\)
Vậy ...
c) \(Q\left(x\right)=-2x^2+x-8\)
\(-2Q\left(x\right)=4x^2-2x+16\)
\(-2Q\left(x\right)=\left(4x^2-2x+\frac{1}{4}\right)+\frac{63}{4}\)
\(-2Q\left(x\right)=\left(2x-\frac{1}{2}\right)^2+\frac{63}{4}\)
Mà : \(\left(2x-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow-2Q\left(x\right)\ge\frac{63}{4}\)
\(\Leftrightarrow Q\left(x\right)\le-\frac{63}{8}\)
Dấu "=" xảy ra khi :
\(2x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)
Vậy ...
\(2P-2=2\left(xy+yz+zx\right)-2\left(x^2+y^2+z^2\right)+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)
\(=-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)
\(=\left(x-y\right)^2\left(z^2-1\right)+\left(y-z\right)^2\left(x^2-1\right)+\left(z-x\right)^2\left(y^2-1\right)\le0\)
\(\text{( Do }x^2;y^2;z^2\le1\text{)}\)
\(\Rightarrow2P\le2\Rightarrow P\le1\)
\(\text{Dấu bằng xảy ra khi và chỉ khi 1 trong 3 số bằng 1; 2 số còn lại bằng 0.}\)