K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Từ các giả thiếu b<c và b+c<a+1

=> 2b<a+1(1)

Vì 1<a nên a+1<2a(2)

Từ (1)(2) => a<b

hướng dẫn, tự trình bày lại nhe

\(2b< b+c< a+1< 2a\)\(\Rightarrow\)\(b< a\)

9 tháng 9 2019

Mất nick đau lòng con quốc quốcTrình bày giúp với, 

7 tháng 6 2015

Xét 1 < a < a + 1 => a \(\ge\) 2. => a + 1\(\ge\) 3

Mà a + 1 > b + c > a => b + c = 3 = 3 + 0 = 2 + 1 = 1 + 2 = 0 + 3

Vì b < c nên ta có b = 1 hoặc b = 0

Nhưng \(b\ne0\) thì b là mẫu của phân số \(\frac{1}{b}\) => b = 1

                  Khi đó \(\frac{1}{b}=\frac{1}{1}=1>\frac{1}{2}\) (đpcm)

 

3 tháng 6 2016

a < b ⇒ 2a < a + b ; c < d ⇒ 2c < c + d ; m < n ⇒ 2m < m + n 

Suy ra 2a + 2c + 2m = 2(a + c + m) < (a + b + c + d + m + n). Do đó 

\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\) ( đpcm )

16 tháng 6 2015

Do \(a,b,c\) nguyên dương nên \(\left(a,b,c\right)=\left(0;0;0\right),\left(0;0;1\right);\left(0;1;1\right);\left(1;1;1\right)\)

Thử vào biểu thức bên trái đều thấy nó có giá trị nhỏ hơn hoặc bằng 2.

 

18 tháng 3 2016

nếu a,b,c không là số nguyên thì sao hả bạn

18 tháng 6 2017

Ta có: a < b => 2a < a + b       (1)

          c < d => 2c < c + d     (2)

          e < f => 2e < e + f      (3)

Cộng ba vế (1),(2),(3) lại ta được:

2a + 2c + 2e < a + b + c + d + e + f

=> 2(a + c + e)  < a + b + c + d + e + f

=> \(\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\) (đpcm)

13 tháng 7 2016

Do a < b < c < d < m < n

=> a + c + m < b + d + n

=> 2 × (a + c + m) < a + b + c + d + m + n

=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)

13 tháng 7 2016

Do a < b < c < d < m < n

=> a + c + m < b + d + n

=> 2 × (a + c + m) < a + b + c + d + m + n

=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)

28 tháng 8 2018

ai làm đk mình k cho

28 tháng 8 2018

Ta có:  a < b     =>    2a < a + b

           c < d      =>    2c < c + d

           m < n     =>    2m < m +n

suy ra:    2 ( a + c + m)  < a + b + c + d + m + n

=>   \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

28 tháng 8 2019

\(\hept{\begin{cases}a< b\Rightarrow2a< a+b\\c< d\Rightarrow2c< c+d\\m< n\Rightarrow2m< m+n\end{cases}}\)

\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)