Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề: \(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow-\left(x+y\right)=z\)
\(\Leftrightarrow-\left(x+y\right)^5=z^5\)
\(x^2+y^2+z^2=1\)
\(\Rightarrow x^2+y^2=1-z^2\)
\(\Rightarrow\left(x+y\right)^2-2xy=1-z^2\)
\(\Rightarrow\left(x+y\right)^2=1-z^2+2xy\)
\(\Rightarrow\left(-z\right)^2=1-z^2+2xy\)
\(\Leftrightarrow xy=\frac{2z^2-1}{2}\)
Nên ta có:
\(VT=x^5+y^5+z^5=x^5+y^5-\left(x+y\right)^5\)
\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)
\(=x^5+y^5-x^5-5x^4y-10x^3y^2-10x^2y^3-5xy^4-y^5\)
\(=-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=-5xy\left(x^3+y^3\right)-10x^2y^2\left(x+y\right)\)
\(=-5xy\left(x+y\right)\left(x^2-xy+y^2\right)-10x^2y^2\left(x+y\right)\)
\(=-5xy\left(x+y\right)\left(x^2-xy+y^2+2xy\right)\)
\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)
\(=-5.\frac{2z^2-1}{2}.\left(-z\right).\left(1-z^2+\frac{2z^2-1}{2}\right)\)
\(=\frac{5z\left(2z^2-z\right)}{4}=\frac{5}{4}z\left(2x^2-1\right)=\frac{5}{4}\left(2z^3-z\right)=VP\)
=> đpcm
Áp dụng BĐT Cô-si,ta có :
x4 + yz \(\ge\)\(2\sqrt{x^4yz}=2x^2\sqrt{yz}\); \(y^4+xz\ge2y^2\sqrt{xz}\); \(z^4+xy\ge2z^2\sqrt{xy}\)
\(\Rightarrow\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)
CM : x + y + z \(\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
\(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{yz+xz+xy}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)
Áp dụng BĐT Cauchy cho các cặp số dương, ta có: \(\Sigma\frac{x^2}{x^4+yz}\le\Sigma\frac{x^2}{2x^2\sqrt{yz}}=\Sigma\frac{1}{2\sqrt{yz}}\)
\(\le\frac{1}{4}\Sigma\left(\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{2}.\frac{xy+yz+zx}{xyz}\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)
Đẳng thức xảy ra khi x = y = z = 1
Từ đề bài ta có:
\(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge0\\\left(x-3\right)\left(y-3\right)\left(3-z\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\ge0\\-xyz+3\left(xy+yz+zx\right)-9\left(x+y+z\right)+27\ge0\end{matrix}\right.\)
Lấy trên + dưới ta được
\(4\left(xy+yz+zx\right)-8\left(x+y+z\right)+28\ge0\)
\(\Leftrightarrow4\left(xy+yz+zx\right)+20\ge0\)
\(\Leftrightarrow2\left(x+y+z\right)^2+20\ge2x^2+2y^2+2z^2\)
\(\Leftrightarrow x^2+y^2+z^2\le11\)
Bài này Karamata là vừa :D
Giả sử \(a\ge b\ge c\)
Khi \(f\left(x\right)=x^2\) là hàm lồi trên \(\left[-1,3\right]\) và \((-1,-1,3)\succ(a,b,c)\)
Theo Karamata's inequality ta có:
\(11=\left(-1\right)^2+\left(-1\right)^2+3^2\ge a^2+b^2+c^2\)
\(VT=\sum\frac{x^2}{x^4+yz}\le\sum\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2}\sum\frac{1}{\sqrt{yz}}\le\frac{1}{4}\sum\left(\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{xy+yz+zx}{xyz}\right)\le\frac{1}{2}\left(\frac{x^2+y^2+z^2}{xyz}\right)=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Dự đoán dấu = xảy ra khi x=y=\(\dfrac{z}{2}\)
ta có: \(VT=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{x^2}\)
\(=3+\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\right)+\left(\dfrac{z^2}{y^2}+\dfrac{z^2}{x^2}\right)\)
Áp dụng BĐT AM-GM: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge2\)
Áp dụng BĐT bunyakovsky:\(\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\ge\dfrac{1}{2}\left(\dfrac{y}{z}+\dfrac{x}{z}\right)^2=\dfrac{1}{2}.\dfrac{\left(x+y\right)^2}{z^2}\)
\(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\ge\dfrac{1}{2}\left(\dfrac{z}{x}+\dfrac{z}{y}\right)^2\ge\dfrac{1}{2}\left(\dfrac{4z}{x+y}\right)^2=\dfrac{8z^2}{\left(x+y\right)^2}\)(AM-GM)
do đó \(VT\ge5+\dfrac{1}{2}\dfrac{\left(x+y\right)^2}{z^2}+\dfrac{8z^2}{\left(x+y\right)^2}\)
Đặt \(\dfrac{z}{x+y}=a\)(a>0)thì \(a\ge1\)do \(z\ge x+y\)
\(VT\ge8a^2+\dfrac{1}{2a^2}+5=\dfrac{a^2}{2}+\dfrac{1}{2a^2}+\dfrac{15}{2}a^2+5\ge\dfrac{a^2}{2}+\dfrac{1}{2a^2}+\dfrac{25}{2}\)
Áp dụng BĐT AM-GM: \(\dfrac{a^2}{2}+\dfrac{1}{2a^2}\ge2\sqrt{\dfrac{a^2}{4a^2}}=1\)
do đó \(VT\ge1+\dfrac{25}{2}=\dfrac{27}{2}\)(đpcm)
Dấu = xảy ra khi a=1 hay \(x=y=\dfrac{z}{2}\)
Xét hiệu \(x^4-15x+14=\left(x-1\right)\left(x-2\right)\left(x^2+3x+7\right)\le0\)
\(\Rightarrow x^4\le15x-14\).
Tương tự: \(y^4\le15y-14;z^4\le15z-14\).
Cộng vế với vế của các bất đẳng thức trên kết hợp giả thiết x + y + z = 5 ta có:
\(P=x^4+y^4+z^4\le15\left(x+y+z\right)-42=33\).
Đẳng thức xảy ra khi và chỉ khi (x, y, z) = (2, 2, 1) và các hoán vị.
Vậy...
cho mình hỏi làm thế nào để bạn tìm ra đc cách xét hiệu x4-15x+14
có phưong pháp nào ko
nếu có thì bn giúp mk vs nhé